Nézzük az idő szerinti deriválásokat:
v' = a
(Rv)'' = (R'v + Rv')' = R''v + 2R'v' + Rv''
(R2v)''' = (R2'v + R2v')'' = (R2''v + 2R2'v' + R2v'')' =
= R2'''v + 3R2''v' + 3R2'v'' + R2v'''
(R3v)'''' = (R3'v + R3v')''' = (R3''v + 2R3'v' + R3v'')'' = (R3'''v + 3R3''v' + 3R3'v'' + R3v''')' =
= R3''''v + 4R3'''v' + 6R3''v'' + 4R3'v''' + R3v''''
.
.
.
R'' = -r'' = -v' = -a
(RR)''' = (R'R + RR')'' = (R''R + 2R'R' + RR'')' =
= R'''R + 3R''R' + 3R'R'' + RR'''
(R2R)'''' = (R2'R + R2R')''' = (R2''R + 2R2'R' + R2R'')'' = (R2'''R + 3R2''R' + 3R2'R'' + R2R''')' =
= R2''''R + 4R2'''R' + 6R2''R'' + 4R2'R''' + R2R''''
.
.
.
A hatványok deriváltjainak kifejtése hasonlóan szaporítja a tagok számát, úgyhogy rengeteg tag van.
R' = -r' = -v
R'' = -r'' = -v' = -a
.
.
.
R' ≈ -r'n = -vn
R'' ≈ -r''n = -v'n = -an
.
.
.