. Ο Στέλιος Ψαρουδάκης, λέκτορας τής Αρχαίας Ελληνικής Μουσικής τού ... τού Πίνδαρου απέδωσε η ηθοποιος Μάνια Τεχριτζόγλου και ο Στέλιος Ψαρουδάκης. ... www.stoabibliou.gr/draseis/pv_12Pindaros.htm
Stelios Psaroudakēs ... ist Autor oder Co-Autor folgender Beiträge: [ OrA 7 ] [ Inhaltsverzeichnis ] Studien zur Musikarchäologie II. Musikarchäologie früher Metallzeiten. Vorträge des 1. Symposiums der International Study Group on Music Archaeology im Kloster Michaelstein, 18.-24. Mai 1988. In memoriam Hans Hickmann (1908-1968).
Music Archaeology of Early Metal Ages. Papers from the 1st Symposium of the International Study Group on Music Archaeology at Monastery Michaelstein, 18-24 May, 1988. In memoriam Hans Hickmann (1908-1968). Ellen Hickmann, Ingo Laufs und Ricardo Eichmann (Hrsg.) <H041, L057, E010> [Texte: deutsch, englisch] <Fremdsprachige Zusammenfassungen: keine> Rahden/Westf. 2000 ISBN: 3-89646-637-2 Preis: 76,80 € (fPr) Gefundener Beitrag: 1. 263 - 278 Zur Jocharm-Joch-Verbindung bei der klassisch hellenischen Kithara. [Text: englisch] <Fremdsprachige Zusammenfassungen: keine> Stelios Psaroudakēs [ OrA 10 ] [ Inhaltsverzeichnis ] Studien zur Musikarchäologie III. I. Archäologie früher Klangerzeugung und Tonordnung. Vorträge des 2. Symposiums der Internationalen Studiengruppe Musikarchäologie im Kloster Michaelstein, 17.-23. September 2000. II. Musikarchäologie in der Ägäis und Anatolien. Vorträge des Internationalen Musikarchäologischen Kolloqiums des Deutschen Archäologischen Instituts (Istanbul) in Zusammenarbeit mit der ICTM-Study Group on Music Archaeology und dem Institut Français d'Archéologie (Istanbul) Mimar Sinan Universität, Istanbul, 12.-16. April 1993.
Studies in Music Archaeology III. I. The Archaeology of Sound: Origin and Organisation. Papers from the 2nd Symposium of the International Study Group on Music Archaeology at Monastery Michaelstein, 17-23 September 2000. II. Music Archaeology in the Aegean and Anatolia. Papers from the Colloquium on Music Archaeology organised by the Deutsches Archäologisches Institut (Istanbul) in cooperation with the ICTM-Study Group on Music Archaeology and the Institut Français d'Archéologie (Istanbul) Mimar Sinan University, Istanbul, 12-16 April, 1993. Ellen Hickmann, Anne D. Kilmer und Ricardo Eichmann (Hrsg.) <H041, K096, E010> [Texte: deutsch, englisch] <Fremdsprachige Zusammenfassungen: deutsch, englisch> Rahden/Westf. 2002 ISBN: 3-89646-640-2 Preis: 95,00 € (fPr) Gefundener Beitrag: 1. 335 - 366 Der Aulos von Argithea. [Text: englisch] <Fremdsprachige Zusammenfassung: deutsch> Stelios Psaroudakēs [ OrA 15 ] [ Inhaltsverzeichnis ] Studien zur Musikarchäologie IV. Musikarchäologische Quellengruppen: Bodenurkunden, mündliche Überlieferung, Aufzeichnung. Vorträge des 3. Symposiums der Internationalen Studiengruppe Musikarchäologie im Kloster Michaelstein, 9.-16. Juni 2002.
Studies in Music Archaeology IV. Music-Archaeological Sources: Finds, Oral Transmission, Written Evidence. Papers from the 3rd Symposium of the International Study Group on Music Archaeology at Monastery Michaelstein, 9-16 June 2002. Ellen Hickmann und Ricardo Eichmann (Hrsg.) <H041, E010> [Texte: deutsch, englisch] <Fremdsprachige Zusammenfassungen: deutsch, englisch> Rahden/Westf. 2004 ISBN: 3-89646-645-3 Preis: 95,00 € Gefundener Beitrag: 1. 471 - 492 Der Orestes Papyrus: Gedanken zu problematischen Musikzeichen. [Text: englisch] <Fremdsprachige Zusammenfassung: deutsch> Stelios Psaroudakēs
Homer’s Lyre: The Indo-European Music-stream 3.1 Because heptatonic scales are now so familiar, Terpander’s causes little discomfort. More problematic is the putting aside of “four-voiced song” ( ). In this regard, the fragment has been the subject of a long- standing controversy. Deubner (1929) argued that the ancient interpretation of these verses—as seen for example in Strabo ( cf. 3.10 )—should be upheld, that they bear witness to an historical change of the Greek lyre from four to seven strings. At that time, the notion of a four-stringed instrument had been rejected as ludicrous by Wilamowitz and others, who saw it as a back-formation of the Hellenistic period, for whose theorists, as post-Aristoxeneans, the tetrachord was an important unit of analysis. 1 Deubner supported his argument with a thorough survey of the then- available representations from the Mycenaean period through the early Archaic. Recognizing that in some cases an artist might be limited by space, material, or interest in realism, he showed that the art of the Geometric period is, on the whole, consistent in showing instruments of three or four strings. 2 It seemed that the seven-stringed lyre, which was predominant in the Mycenaean period, 3 began to resurface in the late- eighth century, being firmly re-established by the middle of the seventh—just when the Lesbian singer was said to have lived. Deubner (1930) went on to argue that Terpander’s inspiration came from his knowledge of Near Eastern instruments, known to have been many-stringed (i.e. seven or more), in support of which he pointed to Pindar’s portrait of the poet at Lydian banquet tables, where he was introduced to the ( cf. 2.15 ) . 3.2 The quickness of nineteenth-century scholars to reject a four-voiced music seems surprising today, with many traditions now documented which use only a few pitches. It is not merely that a four-stringed lyre seemed beneath the dignity and imagination of the Greeks: such traditions were simply not known. Bartók himself, who made such important contributions to the ethnomusicology of the Balkans, was at first 1 Likewise, Winnington-Ingram (1936), 10ff. cautioned that theories about early Greek music should not to be based on the tetrachord. 2 Subsequent surveys of four-stringed and other lyres of fewer than seven strings include Gombosi (1939), 48ff.; Wegner (1949), 222f.; (1968), 2-16; for new seven-stringed examples from the Archaic period, see Gostoli (1990), XXXIX-XLI. On the issue of instruments with other than four or seven strings, see below. 3 Anderson (1994), 1-16, gives a good overview of the Mycenaean and Minoan evidence and of the evolution of Greek instrument types in general; Younger (1998) now provides a comprehensive collection of the Bronze Age evidence. Page 2 62 unaware of the existence of the South Slavic epic song tradition in his own backyard. There is now no a priori reason to doubt the existence of a “four-voiced song”, and on the whole recent scholarly opinion has accepted either a standard Homeric lyre of four strings; or, more flexibly, lyres which could intentionally have fewer than seven- strings. 4 3.3 But the attack against the tradition was relaunched by Maas/Snyder (1989), vehemently condemning Deubner’s article as “influential and unfortunately misleading”. 5 (For the record, Deubner was merely trying to confirm what musicologists had already long entertained on the strength of the ancient tradition; this is the direction of influence. 6 ) On the basis of the Mycenaean and Minoan evidence, Maas and Snyder maintain that the lyre had always been seven-stringed. 7 Their case is weakened by the attempt to explain away the ancient traditions, accepted by most scholars, of ever increasing in professional instruments of the fifth and fourth centuries. As they see it, the lyre remained seven-stringed even through the modulatory New Music of the late fifth century, the traditions being due to comic hyperbole and post-classical misunderstanding. 8 It is true that the seven-stringed lyre persisted into later centuries, especially at the popular and educational levels, and this is a crucial fact ( cf. 7.15 ). But the gradual addition of strings by professionals like Phrynis, Philoxenus, and Timotheus can hardly be doubted. 9 3.4 The mainstay of the argument against a four-stringed lyre has always been the supposed unreliability of the plastic and ceramic evidence in the Geometric period. 4 Gombosi (1939), 19, 48ff.; (1944), 172; Wegner (1949), 29; Picken (1975) 597f.; West (1981), 115; cf. (1992), 52, 330 with n.7; Barker (1982-9), 1.43 n. 18; Gostoli (1990) XXXIX-XLI; Anderson (1994), 61ff. 5 Mass/Snyder (1989), 26, 36, 203. 6 E.g. Hawkins (1776), 1.3ff.; Helmholtz (1895). 7 Mass/Snyder (1989), 203: “Variations of a minor sort probably occurred, but in essence the seven-stringed lyre remained seven-stringed from before the days of the Trojan War to the time of Alexander the Great and probably beyond.” In this they have been followed by Younger (1998), 20 and n. 51, and themselves followed e.g. Shipton (1985), 117 n.21; Duchesne-Guillemin (1967) and Allen/Halliday/Sikes (1936), 274f. Deubner (1929) himself allowed for a continuous history of heptatony: “Dass Terpander die siebensaitige Leier nicht im eigentlichen Sinne erfunden haben kann, ist durch den Sarkophag von Hagia Triada bewiesen” (195). See further below. 8 Mass/Snyder (1989), 62f. 9 See e.g. Anderson (1994), 140. Page 3 63 Maas and Snyder warn that the Geometric depictions are not to be trusted, their crudeness revealing a lack of concern as to the finer points of chordophone construction; space and material bring further limitations. 10 It is true that the evidence of ancient paintings has been abused by those who accept every variation in string number as reflecting some definite tonal reality. 11 But for the Greek evidence of the Geometric and Archaic periods, Deubner’s judicious examination has been sufficiently defended by West (1992): Certainly in some cases we may say that a painter or the maker of a small model had room for only three or four strings in the space available, given the thickness of his brushstrokes or the metal strands he could make. But in other cases more strings could easily have been accommodated; and in view of the quantity of the evidence, besides the existence of a literary tradition . . . Perhaps some [sc. lyres] had only three, but as between three and four the artistic evidence does not have the same probative value as it has between four and seven, and we should expect there to be a standard number corresponding to the requirements of a particular type of singing. 12 3.5 With two exceptions, Geometric art does in fact show instruments of three or four strings, and occasionally two or five. 13 The two exceptions come in the late eighth 10 Mass/Snyder (1989), 203. 11 See, for example, the elaborate evolutionary scheme devised by Gombosi (1944). 12 West (1992), 52 and n. 15. 13 The description in Ps.-Plut. de Mus. 1137a-b of early music as “simple and three- pitched/stringed” ( ) probably does not relate to such instruments. Barker (1982-9) 1, 223 n. 124 persuasively argues that three pitches per tetrachord are intended, since this passage clearly recalls the earlier description (derived from Aristoxenus) of the enharmonic of Olympus (cf. 1135a-b), which omitted ‘diatonic ’ (cf. 1.4, 1.12, 1.25, 7.21, 7.39). If Barker’s interpretation is correct, then how does this relate to Terpander, who has just been mentioned in company with Olympus, and whose hallmark is always the seven-stringed lyre? If the Libation Music of Olympus were not so neatly accounted for, one might try to associate with the three- and four-stringed Geometric instruments and —that is, to the older style which ‘Terpander’ seems to have continued performing alongside the new heptatony (cf. 2.29). Sources which describe an archetypal three-stringed lyre (e.g. D. S. 1.16.1, ps.-Censor. de Mus. 6.610.1f.) derive from the schematization of the archaic heptachord through its boundaries (see further 9.38-39); conceivably this could be the reference. But the simplest solution is to suppose that applies only to the Libation Style discussed earlier. Olympus is mentioned by himself in this final statement ( Page 4 64 century, 14 just when Orientalizing elements are beginning to saturate Greek culture. One cannot apply a double standard. The evidence is only unrealistic only if one decides in advance that seven strings had been standard from the Mycenaean period onwards. For the sake of argument, one could assume that four-stringed lyres had always been the norm, with seven-stringed depictions the result of artistic fantasy and abundance of space. Provided one observes proper caution—as Deubner did—it is better to trust the overall reliability of the artists at each period, and confront the difficulties this raises. If a believable explanation can be found for the various changes, the artistic evidence will fall into place. 3.6 The Minoan and Mycenaean evidence, then, is a difficulty which has yet to be overcome. After all, if the lyre had once been seven-stringed, why should there have been a ‘regression’ to less than seven? Of those who have accepted the Terpandrean tradition, Deubner was alone in proposing a solution: though the seven-stringed lyre was developed in Crete during the palatial period, it was slow to supplant an older four-stringed lyre, and Terpander was merely given credit for the final victory. 15 But the hypothesis of a gradual diffusion from Crete is now undermined by finds of seven-stringed lyres at mainland sites in the Mycenaean period. 16 This distribution suggests a division not between Crete and the mainland, but between palace and village: lyre-players are depicted in palatial art, and are now attested among the palace personnel in Thebes ( cf. 4.5, 5.7 ). Other scholars who accept that lyres went through a period of fewer strings in the Dark Age have offered no explanation, though West (1992) recognizes that the phenomenon has important tonal implications. 17 suppl. Bernardakis ), and though Terpander has just been mentioned twice in company with him, there the contrast was with and , which in other sources are measured as deviations from the standard seven strings: see further 8.49-65. 14 See West (1992), 51f. 15 Deubner (1929), 198f.: “Terpander es war, der die siebensaitige Leier zwar nicht erfunden, aber doch für die Griechen zuerst an Stelle der bis dahin üblichen viersaitigen eingeführt und kanonisiert hat”. Cf. West (1992), 330. 16 See Younger (1998), 61ff. 17 West (1992), 328: “it suggests a more restrained style of singing that used a smaller compass, perhaps not more than a fifth”. Page 5 65 3.7 Maas and Snyder object further to Deubner’s textual interpretation of the fragment: Even if the lines are genuine, they need not refer to the replacement of a four-stringed instrument with a seven-stringed one; the first line refers only to “four-voiced song”, which might be taken in opposition to the “new hymns” of the next line, rather than to the “seven-toned phorminx”. The poet may only be saying that he is casting aside an old form of song in favor of a new one that is accompanied by the phorminx. The lines do not say that the phorminx ever had fewer than seven strings. 18 The antithesis which Maas and Snyder wish to create—between “four-voiced song” and “new hymns”, with the “seven-toned phorminx” irrelevant to the disjunction—is impossible. By any interpretation, must mean a song or style using four pitches. The alternative, a song for four voices, is impossible. The numerical elements mark out the true antithesis, while requires that – “voice”) be a single melodic element, as commonly later with . Now, the Homeric did not, as a rule, sing without his lyre. 19 If we may take South Slavic heroic song as the closest extant cognate tradition ( see below ), it is very likely that the provided the voice with an accompaniment which, if not always—or ever—in strict unison, was at least of similar pitch range. 20 An oral poet uses his instrument primarily to mark rhythm as an aid to composition within the necessary metrical restrictions. 21 Whatever the value of Saint-Saëns’ comparison with modern African lyre-technique, 22 and however much melodic composition may have changed in the melic revolution, it is probable that epic lyre accompaniment involved a certain amount of heterophony in the form of rhythmic strumming, where the function of string-pitches would be to provide the singer with his palette of tones. While this function does not absolutely exclude a close correspondence between vocal 18 Mass/Snyder (1989), 203. 19 Apart from the fact that Demodocus, Phemius, and Achilles are so portrayed by Homer, there is the explicit literary testimony of e.g. S. E. M. 6.16-17 (166.17f.): (“The epics of Homer were of old sung to the lyre”); conversely, Hesiod was considered anomalous for not playing the lyre: cf. Paus. 10.7.3: (“And it is said that Hesiod too was ruled out of the [sc. Pythian] competition, not having learned to play the cithara along with his singing”). 20 Nothing about the technical phrase (Hom. Il. 18.570; Od. 21.411; h. Merc. 54, 502) implies unison accompaniment. On this expression, see further 5.15. 21 See Lord (1980), 46. 22 See Gombosi (1944), 178f. Page 6 66 and instrumental ‘melody’—recalling that the word is anachronistic in the description of Homeric music ( cf. 2.31-32 )—clearly it would do little to foster such a relationship. 3.8 In the South Slavic tradition, the singer accompanies himself with the gusle, a member of the lute family (i.e. having a fingerboard) whose one string can produce a number of pitches through stopping. The accompaniment here is obviously monophonic, and is almost never in strict unison with the voice. Its primary function, while not without a melodic component in that it makes use of differences of pitch, is rhythmic. At the same time, it uses approximately the same pitch range as the voice, and often ‘sings’ a simpler counter-melody—or better ‘rhythm-melody’—as may be seen from Bartók’s transcriptions. 23 In Greece, where the epic singer’s instrument was a lyre, each string of which gave out only one pitch, 24 the quantification of ‘voice’—compare the later use of in terms like and —must have a parallel implication for string number, and vice versa. This reading of Terpander’s language finds clear parallels in Pindar’s and Bacchylides’ of a seven-stringed lyre’s accompaniment. 25 Sophocles too uses of the instrument’s voice in the Ichneutai, which dramatized the myth of Hermes’ invention. 26 Compare also Euripides’ and . 27 Thus, can only mean a melodic division into four pitches, accompanied by a which, if not invariably four-stringed, would certainly fall short of being heptatonic. Of course, it is possible that an earlier four- 23 Parry/Lord/Bartók (1954); cf. Lord (1960), 37-41; Foley (1999), 71, who notes that both vocal and instrumental lines have a marked tendency to be phrased according to the decasyllable; that is, the stichic repetition of the metrical unit is strongly felt by the singer. 24 I leave aside the question of whether lyre-strings were ever stopped to yield additional notes: see e.g. Gombosi (1944), 179f. Roberts (1980) found in her reconstructions that stopping produced acceptable results, comparable to pizzicati. But I have heard this technique at the expert hands of Stelios Psaroudakes, with practically no difference in tone color. Given Aristophanes’ testimony that students were introducing modulations to their music lessons, where seven-stringed lyres were standard (cf. 7.17), I think we must accept stopping as a familiar, if occasional, technique. Yet Homeric accompaniment is an entirely different question, and I doubt very much that the technique would have been practicable during composition-in-performance. Cf. West (1981), 116. 25 Pi. O. 3.8; cf. N. 5.22: ’ . . . B. fr. 20B.1f. (Snell): . 26 S. Ichn. 297 (Maltese). 27 E. Rh. 548; Med. 196. Page 7 67 voiced music could later be sung on a seven-stringed instrument by using only part of its range, and that this is the context of the poem. 3.9 The deeper problem with Maas and Snyder’s criticism is that the reading is not merely Deubner’s, but that of Strabo and many other ancients. Terpander’s authority as an innovator rests on information considerably older than the Roman geographer, antedating the period of theoretical schematization in the late fifth and fourth centuries. From Aristoxenus comes the fragment of Pindar which attests Terpander’s ties with Lydia and the invention of the . 28 Timotheus, too, attests the legend of Terpandrean novelty ( cf. 8.61-65 ). The tradition marks the continuity of Greek musical memory in the Archaic period—a perfectly believable achievement, given that historically the preservation of ancient lore had long been entrusted to musicians. 3.10 Finally, Maas and Snyder question the authenticity of the fragment, an issue not addressed by Deubner. Strabo himself is dubious, they say, citing (“it is said”) as evidence of the geographer’s reluctance to commit himself: 29 30 Terpander . . . the first to use a seven-stringed lyre instead of a four-stringed one, exactly as it is said in the verses ascribed to him. But cannot imply a questionable popular opinion: it merely reports the content of the verses. (“ascribed”), on the other hand, might have been used to support the argument, since it raises the issue of the verses’ attribution. 31 But even if Strabo had his doubts as to Terpander’s authorship, there is no sign that he did not believe in the tradition itself; quite the opposite, as can be seen from . And in fact, as we have seen, belief in the tradition is well-attested throughout antiquity. 3.11 The issue of authenticity is, at any rate, beside the point. As Deubner argued from the start, it need not be literally true that Terpander was the first to use a seven-stringed 28 Pi. fr. 125 (S-M). 29 Mass/Snyder (1989), 26 and n.17. 30 Str. 13.2.4. 31 Cf. Wilamowitz (1903), 64 n.1. Page 8 68 lyre: he may only have been instrumental in popularizing it. 32 West (1992) has taken this view a step further, suggesting that Terpander need only have been a prominent name with whom later memory could associate a large-scale change in musical tastes. 33 Indeed, taking Terpander’s floruit (let us say 675) to mark the mainstream acceptance of seven-stringed tunings, and counting backwards by two generations to allow for a larger movement of which Terpander was the culmination (perhaps 725), the Lesbian gleeman may be seen as representing a musical movement which corresponds very closely to the Neo-Assyrian acme. 34 Though certainly historical, Terpander—like the archetypal guslar 35 and Homer himself—grew to symbolize the melic revolution. This is the more attractive for being able to accommodate the numerous other innovations attributed to him. 36 Thus, as we have seen, the anonymous corpus of citharodic preludes was ascribed to the Lesbian singer ( 2.29 ). Such a situation could also underlie reports that Terpander received credit for some of Philammon’s musical contributions—though Philammon is himself a mythical figure. 37 Also of interest is the tradition, parallel to that of Terpander, which makes Amphion, having added three strings to an earlier four, learn the “the tuning of the Lydians” ( ). 38 These and other such testimonia should not be regarded as a hopelessly inconsistent jumble of tales, but as a document of heterogeneous musical change throughout the whole of Greece, with all its regional subtraditions, over several generations. What is important, then, is not whether the 32 Deubner (1929), 195. 33 West (1992), 330: “Much of this [list of innovations] was no doubt constructed by projecting Classical citharodes’ practice and repertory back upon the first famous citharode to be remembered.” 34 It is not surprising, then, that depictions of seven-stringed instruments are quite rare in the first part of this transitional period, even allowing for the decreased sample size (See West [1992], 52), while at the same time instruments of fewer than seven strings are also attested, e.g. a five-stringed lyre from Attica (c. 700): Anderson (1994), fig. 11. 35 On the legendary guslar, see Foley (1999), 49-56. 36 Cf. West (1992), 329f.; Barker (1982-9), 1.43 n. 18. 37 Ps.-Plut. de Mus. 1133b: del. ego] (“They say that the ancient Philammon [of Delphi] composed some of the citharodic nomes which were used by Terpander in his poetry”)—the odd repetition of the article suggests an interpolation, glossing Philammon; cf. Suda s.v. : 38 Paus. 9.5.7-8. Page 9 69 Greeks believed in the authenticity of Terpander’s poem, but whether they believed their music underwent significant change in the early Archaic period. In fact, as we have seen, there were many musical figures from this time who were remembered as innovators, often with Asian associations ( cf. 2.2 ). 3.12 Deubner’s hypothesis, while not answering all the questions raised by this fragment, nevertheless rests upon sound methodology. The conflicting indicators of the ceramic evidence are not to be dismissed, but should be welcomed as an opportunity for discovering greater historical complexity. There are three essential issues, to be treated one each in this and the following two chapters: the meaning of in the context of pre-Orientalizing Greek music; the place of the Mycenaean seven-stringed lyre within this music stream ( 4.0 ); and the broad changes to earlier tradition wrought by the heptatonic of Terpander ( 5.0 ). 3.13 Accepting that a four-stringed had been the instrument of the epic singer, West (1981) suggested that this instrument implied a limited melodic range which might be typical of the ancestral Indo-European song tradition, and made an ingenious (and admittedly speculative) reconstruction of the four-pitched tuning with which the accompanied his melodies. In support of such limited melodic ambitus, West pointed to Serbo-Croatian heroic song ( see below ) and to the chanting of the Rgveda, in which the words’ ancient pitch accents are stylized into a three-pitched melody. Given that the tonal accent was an original part of Proto-Indo-European, he suggested the possibility that “the practice of ‘singing’ texts by disposing the syllables over a limited set of fixed notes according to their accents was also Indo-European”. 39 The Indo-European basis of Vedic song has been challenged by other scholars, who see the accent-singing as a secondary development. 40 That the Indian vocal art does not match the Greek system of accents poses no problem in itself, however, for musical practice would naturally diverge alongside the respective languages. Be that as it may, ‘speech-song’ occurs in many forms throughout the world, and such traditions were probably already ancient at the time of Indo-European unity. 41 The fact remains that the hymns of the Rgveda are proven descendants of the Indo-European song tradition, whatever its melodic art may have entailed originally. 3.14 In theory, at least, the general melodic character of the ancestral art might be understood in the same way as Proto-Indo-European itself, by deduction from the 39 West (1981), p. 114. 40 Burrow (1973), 115; cf. Anderson (1994), 46. 41 Wiora (1959). Page 10 70 comparative evidence of the daughter traditions. The progressive linguistic divergence of these from their reconstructed parent is now quite well understood. Just as verbal sound laws may be drawn between languages as dissimilar as Greek and Sanskrit, it is possible to do the same for cultural institutions—which may change much more slowly than language—and an astonishingly rich picture of Indo-European culture has emerged in this way. 42 3.15 Recent work on Indo-European poetics has grown from the fundamental breakthrough in the area of metrics, from which it is necessary to infer an ancestral art, based on the distinction between long and short syllables and using certain fundamental patterns, which split into a number of subtraditions. 43 Even more than linguistic kinship, this brings to life the reality of a unified Indo-European culture—“so small a language community that dialect differentiation on a spatial basis played no part” 44 . It also demonstrates the astonishing powers of conservation possessed by the singers. 45 The reconstruction of poetic diction depends on the assumption that the metrical element developed side-by-side with a continually evolving repertoire of word-formulae, built up over generations, which Parry (1930, 1932) proved to be the primary compositional tool of both the Serbo-Croatian and Greek heroic singer. These formulae were used as building blocks in the improvised song-telling of traditional stories, no two versions of which were ever the same, although the storyline itself—the Aristotelian —might be considered a unique entity. This process explains the seemingly paradoxical statement of the Phemius, who asserts “I am self-taught, and a god implanted all sorts of tales in my mind.” 46 42 See especially Benveniste (1973); Polomé (1982); Watkins (1995). 43 The foundation was laid by Meillet’s (1923) comparison of Greek and Indic verse; Jakobson (1952), Watkins (1963), and Cole (1969) established the Indo-European nature of Slavic, Celtic, and Italic metre respectively; for Nagy’s (1974) comparison of Greek and Indic metre, see below. 44 W. Meid ap. Szemerényi (1996), 30. 45 Further cognate phrases and semantic doublets are catalogued by Schmitt (1967); (1968). 46 Hom. Od. 22.347f.: ’ . As Dodds (1951), 10 explained, “The two parts of his statement are not felt as contradictory . . . he has not memorized the lays of other minstrels, but is a creative poet who relies on the hexameter phrases welling up spontaneously as he needs them out of some unknown and uncontrollable depth; he sings ‘out of the gods,’ as the best minstrels always do”. Page 11 71 3.16 Taking this as his departure point, Nagy (1974) made a case study of a pair of phrases first noted by Kuhn (1853)—Greek and Sanskrit srava(s) aksitam—which are phonologically, quantitatively and accentually equivalent (< PIE *klewos ndh w hitom, “imperishable fame”). These, he argued, constitute cognate poetic formulae which, by a fortunate accident, had been handed down intact over the millennia by singers who, originally, must have known the same songs and shared an archetypal repertoire of poetic formulae. According to this approach, elements of Proto-Indo-European poetic diction may be tracked through the overgrown jungle of metrical data, like a single tagged animal will reveal the peregrinations of its species. The formulaic character of has since been questioned, 47 and many scholars now believe that “the hierarchical dependence of metrical form on phonological and phonetic form makes actual reconstruction of metrics an unrealistic goal”. 48 Nevertheless, the large amount of poetic phraseology which can now be reconstructed 49 requires us to suppose some coevolution of diction and metre. 3.17 Although many of the Greek and Indic metres as we have them are fixed grids into which words of matching syllabic quantities were fitted, they cannot have been so originally; for otherwise we should expect to find cognate poetic material in identical metres. Because they occur in different but related metres, the fixed classical forms must have come about incidentally in the course of musical evolution. That is, as certain word combinations were used again and again in the telling of tales, they became fixed formulae, which in turn influenced the singers’ compositional process: “the changes follow the patterns of the stable formulae, because the singer thinks in those patterns.” 50 As the various formulae were used in tandem, larger patterns began to result. These in turn could change as phonological developments took place within the language itself and words acquired new metrical properties. 51 By a continual feedback process, certain patterns became ossified until they did come to function, effectively, as grids. It is important to realize, however, that the Greek metrical art as a whole continued to unfold down into the Classical period, alongside certain fixed forms. The dactylic hexameter was one of these, its evolution complete some time 47 Finkelberg (1986) argues that , which occurs only once in Homer, was an ad hoc creation modelled on other well-established formulae. Yet its frequency in later poetry might well mean that it was not simply a Homeric borrowing, and that its lack of repetition in Homer is insignificant. 48 Watkins (1982), 164f., with further literature; see also Ruijgh (1995); Gasparov (1996). 49 See especially Watkins (1995). 50 Lord (1980), 41. 51 Nagy (1974), 50. Page 12 72 before Homer. Yet, even here, metrical anomalies reveal traces of obsolete phonology, in some cases antedating Linear B. 52 3.18 These discoveries confound rigid notions of genre distinctions. *klewos ndh w hitom, for example—if it truly was an Indo-European formula—surfaces in the epic song of Homer, the non-epic, more ‘lyric’ hymns of the Rgveda, and in a poem of Sappho which is not hexametric, but which is partially dactylic. 53 As Aristotle noted, metre is an insufficient criterion for defining genre. 54 Note that ‘lyric’, like ‘melody’, is at any rate an anachronistic term, if one accepts the communis opinio that the Indo-Europeans knew no form of the lyre before their contact with the Near Eastern cultural sphere. And of course Greek epic was also accompanied by the lyre. The discovery of Indo-European metrical kinship makes it necessary to suppose that, though there will have been different kinds of song, these must have been at one time indistinct as to their basic musical elements, being drawn from a single, homogeneous musical language. Because of this, the lack of attested ‘lyric’ poetry contemporary with Homer need not pose an insurmountable obstacle to establishing the general characteristics of Greek music prior to the Orientalizing period. Indeed, it is certain that the conservative Aeolic tradition preserved inherited metrical features in a very archaic, ‘pre-Homeric’ state. The ‘lyric’ structures used by Sappho and Alcaeus best reveal the survival of Indo-European features, while the dactylic hexameter represents but one special—and relatively late—development of these. 55 For the formulae of Homer, when their internal rhythms are considered outside of their hexametric context, frequently coincide with the metres used by the Aeolian poets. 56 3.19 Since the metrical and dictional data are drawn from the most ancient material available in each of the subordinate traditions, and in every case this is song, 57 one must posit for the Indo-Europeans a unified musical stream of which the metrical and dictional were two components, and for which there must also have been a melodic aspect. The 52 West (1988), 156f. 53 Sapph. 44.4 (Voigt). 54 Arist. Po. 1447a28ff., esp. 1447b17-20: (“but Homer and Empedocles share nothing besides metre, wherefore it is right to call the one a poet, but the other a natural scientist rather than poet”). 55 See Nagy (1974); West (1982), 29f. 56 Nagy (1974), 15, 27ff. 57 Cf. Lord (1962), 180ff. Page 13 73 Slavic, Indic, and Greek traditions have provided essential comparanda for a reconstructed picture of this unified musical stream in its metrical and dictional aspects ( see below ). Because of this, the analogy of Slavic and Greek epic, though often abused in the study of Homer, remains fundamentally valid. 58 Obviously, the two have evolved along very different lines. But a number of shared phenomena—formulaic phraseology, metrical anomalies deriving from formula fossilization, heterogeneous dialectal elements with synchronic and diachronic dimensions 59 —can only be explained as deriving from a single method of building poetry. Since no epic tradition has survived into modern Greece, 60 the cognate South Slavic tradition, different though it may be, is the only evidence which has any real claim to illuminating the melodic practice of Greek epic. 3.20 From his study of Serbo-Croatian folk songs in the Parry collection, Bartók was surprised to discover how many melodies were of restricted scope: a full third of those transcribed spanned only a ‘fifth’, but more often a ‘fourth’ or less. 61 (These interval measures, deriving from diatony, are for this music approximate and anachronistic.) For the most part these were ‘ceremonial’ songs, those which could not be dissociated from certain ritual contexts, taken in the broadest sense—work songs (hay gathering, harvest), cradle-songs, wedding-songs, laments, children’s songs, calendar songs, rain-begging songs, and so forth. A number of these ‘genres’ are also alluded to in Greek sources, beginning with Homer. 62 The equally ancient South Slavic heroic song is itself essentially ritualistic, serving as the historical record of a people, performed in prescribed social settings, and constituting “a necessary part of the so- cial life of the family or of a community”. 63 Tacitus described how the ancient Germanic peoples “celebrate in ancient songs, which is the only kind of record and archives that they have” (celebrant carminibus antiquis, quod unum apud illos memoriae et annalium genus est), mythological stories and the interrelations and migrations of the kindred tribes, using song also for divinatory purposes. 64 Caesar left a crucial description of the Celtic druids as guardians of lore through song, the 58 See generally Foley (1999). 59 See Foley (1999), 66-88. 60 Lord (1991), 93. 61 Bartók/Lord (1951), 52-6; 60. 62 See West (1992), 28f. 63 Lord (1962), 181. 64 Tac. Germ. 2-3. Page 14 74 sacred injunction against the use of writing—an Indo-European characteristic 65 —and the regional schools where training could take as much as twenty years; Diodorus, who uses the term ‘bard’, describes their songs of praise and blame, and the lyre with which they accompanied themselves. 66 Oral composition characterized all of these traditions, and while they flourished, the individual song was continually new, describing recent as well as ancient events. Thus, in the living South Slavic tradition, one encounters jarringly modern details, such as the hero armed with a rifle. At the same time, however, we must suppose the continual fossilization of certain songs, where faithful recitation was crucial to the song’s efficacy. In the Greek and Indic traditions, oral composition as a whole eventually became static. The recitation of the Iliad and Odyssey, for example, became a ritual in itself, that of preserving and learning from the poetic monuments of the ancient style. The same may be said of the Vedic canon, fixed hymns which descend from an originally oral style of composition; here, however, their ritual preservation was religiously driven. 67 3.21 Having observed such material throughout the Balkans, Bartók posited an ancient pan- Slavic musical tradition of which limited melodic compass was a defining feature. 68 He had no cause to look beyond the Balkans; but if his hypothesis is right, one might well suppose that the tradition from which it descended will have used melodies no 65 Caes. B Gall. 6.13-14: neque fas esse existimant ea litteris mandare . . . quod neque in vulgum disciplinam efferi velint neque eos, qui discunt, litteris confisos minus memoriae studere (“And they think it unlawful to entrust these verses to writing . . . because they do not wish the learning to be made common knowledge, and they do not wish those who learn it to develop the memory less through their reliance on writing”); cf. Polomé (1982a), 166f.: “The reserved attitude of the Indo-Europeans was translated in their piety by a set of interdictions . . . their tradition was transmitted orally, and after some of them acquired the skill of writing, a taboo was maintained against putting down in writing their religious lore.” 66 Caes. B Gall. 6.13-14; D. S. 5.31.2-5: ’ ’ (“And among them are also poets of music, whom they call Bards. And these, singing to instruments like lyres, make songs of praise and blame”). On the strength of the celtic bardic tradition as late as the seventeenth century, see further Watkins (1995), 76ff.; Ahl (1991) 136 and n. 14; for the sources used by Caesar and Diodorus, as well as other ancient testimony, see Rankin (1987), 272-276 et passim. 67 Nagy (1974), 15ff. 68 Bartók/Lord (1951), 4, 52-6; 60; cf. Wiora (1959), 203. Page 15 75 less restricted in scope. 69 In his seminal work on the existence of pre-pentatonic ‘tonal systems’, Wiora (1959), expanding on Bartók’s hypothesis, showed that songs of limited melodic compass were to be found, not merely in the folk traditions of Europe, but throughout the world, whether living or fossilized. In the majority of cases, a close relationship existed between melody and speech contour, 70 and this led him to conclude that speech-song had once been a universal or near-universal phenomenon. Both qualities he attributed to the earliest phase of human musical activity. 71 3.22 If Indo-European melodic practice was originally connected with tonal accent, some eventual dissociation of the two would have been unavoidable in the daughter cultures, since this accent has itself proven to be an evanescent feature. Pitch-accent is, however, still preserved in Serbo-Croatian, playing a part in the singers’ melodization, along with a body of stereotyped melodic formulae. 72 What role the tonal accent played in the creation of these formulae is unknown, yet it may have left its mark in peculiarities of melodic intonation which, while being subsequently conditioned by the diatonic scales of Western art music, owe nothing to them in origin. In such singing, the ‘same’ note will often vary widely. 73 Because of this, it is impossible for us to speak of a ‘tone-system’, since, strictly, the musical tone is by definition a single, stable pitch—deriving in this sense from as ( cf. 2.20, 4.33 ). At the same 69 But this is not to yield to an evolutionary view of melody which regards “one-, two-, three-, and more-note systems as corresponding to successive historical periods”; for a refutation of this outmoded view, see Wiora (1959), 185 and as a whole. 70 Wiora (1959), 189 and quoting Hornbostel: “The duality of pitch, rising and falling by one step, is in primitive music obviously related to accent. ‘The singer gives way to the natural tendency to sharpen or flatten the note simultaneously as it grows weaker or stronger.’ It is more natural to change the level in such a manner than to maintain it, that is to repeat the note continuously from beginning to end of a song.” 71 Wiora (1959), 203f.: “[Such narrow melodies] are, obviously, more ancient than pentatony. They belong to the most ancient kind of tonal systems known to us, and, what is more, to the most ancient that ever existed; this can be inferred by systematical considerations . . . They are evidences of the origin of music following the pre-musical sound . . . Ancient forms, that were to become blocks and backbones, shine here in the archaic purity of their origin.” 72 Lord (1960), 37f. 73 Wiora (1959), 200: “If the pitches intoned are measured in cents, the number of cent values obtained may often be very high, while the number of ‘degrees’ conceived still remains very small.” Page 16 76 time, it is clear that this variable intonation is intentional and does form a coherent ‘system’ of some sort. 74 This unique intonation of Serbo-Croatian heroic song, still uninfluenced by European art music at the time of Parry’s fieldwork, 75 might preserve elements of the ancient pitch accent to which the pan-Slavic melodic language as a whole originally answered. The phenomenon of broad musical unity over great geographical stretches is well illustrated by South Slavic poetic diction, which is a composite of Bosnian, Croatian, and Serbian dialectal forms. As with Homeric diction, the singer mainly employs his own dialect, but there are many formulae which carry with them archaic or alien forms. 76 3.23 As to ancient Greek heroic song, its melodic dependence on accent may be inferred from the fact that peculiarities of Homeric accent and pronunciation were preserved in the rhapsodic tradition long enough to receive the attention of Hellenistic grammar- ians; furthermore, the available fragments of notated music suggest that, unless prevented by strophic responsion, even Greek melody of the Classical period and later has a marked tendency to follow the contour suggested by word accent. 77 Indeed, a kind of accent-melody was addressed by Hellenistic literary theorists, who seem to have treated ‘euphony’ as a formal art; Philodemus’ refutation shows that the issue was still alive in the first century B . C ., as do the accents inserted in parts of the text by the unknown owner of the papyrus. 78 Thus, the evidence does in fact indicate an art of accent-melody for Greek epic song. Given the identifiable continuity of Indo- European poetic tradition throughout the daughter cultures, it remains to my mind quite conceivable that core elements of an ancestral vocal art should have persisted—in the broadest terms of course—and that Homer represents one heir to this. On the strength of this alone it should be necessary to explain the presence of heptatonic melodies in Greek music of the Archaic period, even without the traditions about Terpander. It is the seven-stringed lyre, and not the four-voiced song, that requires explanation. 74 Bartók/Lord (1951), 4: “These deviations, since they show a certain system and are subconsciously intentional, must not be considered faulty, off-pitch singing. This is the essential difference between the accidental off-pitch singing of the urban amateurs and the self-assured, self-conscious, decided performance of peasant singers.” 75 Bartók/Lord (1951), 4. 76 Foley (1999), 76f. 77 West (1981), 114; (1992), 198-200. 78 Philodem. Poem. 1.93-4. See Janko (2000), 84, 298-301. Page 17 77 3.24 The Slavic material proves that Greek song could easily have retained its ancient character into the Dark Age. The Vedic tradition, no more ancient than Slavic or Greek oral composition in origin, was effectively arrested at a very early stage in its development—a millennium and a half earlier than the date hypothesized for a common Slavic spoken language 79 —and handed down subject to the most rigorous and centralized conservation that the priests could achieve. This provides an important diachronic anchor for Indo-European poetics, with or without accent singing as original. Serbo-Croatian heroic song, on the other hand, like Greek epic down through the Archaic period, has continued its slow, generational development, without restriction, into modern times. On an absolute timetable, then, the Homeric art falls between the dates for which ancient Indo-European attributes are attested in the parallel subtraditions. 3.25 Yet what supports the notion of an ‘absolute timetable’ when it comes to the development of a melodic art? It would be necessary to suppose that the two basic musical elements of the Indo-European tradition, metrical and melodic, evolved in close company, at roughly the same rate, and both subject to the same conservative transmission which preserved the vestiges of metrical kinship: for it is the metrical data in the first place which guarantee a recognizable Indo-European character to the Greek subtradition at the period in question. But what would prevent the melodic and metrical elements from evolving at different rates? After all, we find melodies of octave scope in Greece over two thousand years ago, while still-extant Slavic melodies preserve traces of the ancestral tradition. 3.26 Moreover, even if Greek was the sort of narrow-range speech-song proposed, was Greek music like this as a whole? One might suppose that the non-heroic songs of the same period—all unattested, and only alluded to by Homer—used melodies of greater scope, while epic singing survived as a sacred and ancient tradition, as it certainly was by the Classical period. Vedic song might provide a parallel, existing alongside the Saman chant, which used the text of the Rgveda but was more recognizably melodic—i.e. more than a simple stylization of the words’ pitch accents, and exceeding at times a sixth in range. The beginning of Saman chant must have been before the Vedic hymns received their finished form. 80 Conversely, the 79 Old Church Slavonic, with records going back to the ninth century A . D ., can be taken as a close representative of a common Slavic language: cf. Szemerényi (1996), 11. 80 Fox-Strangways (1914), 249 n. 2: “There is nothing to show that the [Saman] chants are later than the words [of the Rgveda]; in fact, since Samans are often mentioned in the Rgveda there is a probability, beyond the intrinsic likelihood, that they are older.” Page 18 78 development of wider melodic range—if this was in fact a secondary innovation—did not prohibit the continued existence of more ‘archaic’ melodic styles, for subpentatonic melodies of the type Wiora observed as being global are well documented in India today. These so-called tribal melodies fall outside the elaborate taxonomy of classical raga, which span for the most part a range of at least an octave. 81 The distinction between ‘urban’ and ‘rural’ style seems to have been made already in antiquity by Bharata; 82 if this is right, the contrast will not have been with raga per se, which attained to theoretical primacy at a date considerably later than the Natyasastra. 83 It is not surprising, even at this early date, to find an awareness of the divergence of art music from a more universal and ancient ‘folk’ style. Indeed, a departure from such a conservative practice would seem to demand some historical acknowledgement, like the Terpandrean tradition. The dichotomy provides an interesting parallel to the emanation of diatony from the cities outwards in the Balkans, documented by Bartók ( see below ). 3.27 Once this possibility is allowed, what limit is there to the antiquity of such stylistic co- existence: might there not have been such complexity at the time of Indo-European unity? Under what conditions would melodic compass have changed, especially if one rejects a progressive evolution towards heptatony? Could this have happened from within the tradition, or only in response to some external influence? Clearly, this raises questions about the nature and transmission of melody—a word which I have used lightly until now. But as we understand it—a fixed, repeatable tune—the word is misleading and at least partially, perhaps wholly, irrelevant. As we have seen ( 2.31-32 ), musical is not found in any of Homer’s numerous performance scenes; thus, even if the word could have had a musical sense in his time, it was clearly unessential for the style of song he wished to describe. Furthermore, in the Indo-European and 81 Bhattacharya (1968), 46ff. 82 Bhattacharya (1968), 46ff. The dating of the Natyasastra, a treatise on all aspects of dramaturgy, including music, is uncertain. Ghosh (1934) believed it to be the work of one hand, written in the second or third century A . D .; though isolated verbal features did suggest the preservation of earlier sources; he was reluctant to date this material before the first century B . C . Srinivasan (1980) has since argued persuasively that the work is in fact a hopelessly jumbled and inconsistent compilation; Rocher (1981) has examined the complexity of its textual history. In any event, at least some of the musical terminology must be considerably more ancient than the Natyasastra as we have it, since musical references in older, non-specialized works imply a formal theoretical tradition: cf. Tarlekar (1975), 161; Fox-Strangways (1914), 114. 83 On the relative lateness of the raga system, see Widdess (1995). Page 19 79 other epic traditions, words for ‘song’—e.g. Homeric —are frequently ambivalent as between “sing” and “tell”, 84 and this suggests a fundamental subordination of ‘melody’ to words. All recorded epic melody is simple and repetitive, since the demands of composition-in-performance force the singer to give most of his attention to choice of word and phrase. In the Serbo-Croatian material collected by Parry and Lord, there is an inverse relationship between richness of poetry and complexity of tune. Avdo Mededovic, for example, regarded by Parry and Lord as the last singer of Homeric stature, was a guslar of middling ability who was sometimes reduced to running his bow over the string in a drone as he unleashed great torrents of poetry. 85 Here we see the essentially rhythmic function of the epic singers’ instrument, despite its participation in the realm of pitch. The primacy of poetic invention thus operated as a sort of balancing mechanism to check the elaboration of melodic language. The Indo-European singer of tales was simply not a melodist as we would understand it. 3.28 If the metrical model presented above is valid, and if Indo-European art song involved the melodization of pitch accent—or if its melody answered to any aspect at all of the language—there are several consequences. Where rhythm and melody are drawn from internal characteristics of word and phrase, we must suppose a pattern of melodic evolution analogous to the metrical. Any given combination of words would have a unique pattern of pitch accents to be navigated melodically according to some standard strategy, while allowing for the ‘tactical’ variations of regional subtraditions and the individual singer. The conventions which governed these maneuvers might be called ‘melodic syntax’, depending as it would on the syntax of words. A collocation which stood the test of time, fixing its place in the poets’ repertoire, would be accompanied by a melodic fragment which was also more or less formulaic, to be absorbed by a young singer as he learned the words and rhythm of each formula. Such a fragment comes a step closer to our notion of melody as a unique and memorable pattern of pitches. The sum total of these fragments would comprise a melodic ‘vocabulary’ which would follow the same the cycles of growth and decay as the diction and metre. 86 Yet during composition-in-performance, the melodic and metrical will have unfolded independently; for each new phrase which took advantage of an established metrical cliché would be accompanied by its own accentual pattern. The counterpoint of tonal and metrical modulation provides an ever-different 84 Lord (1962), 180ff.; West (1981), 113. 85 Lord (1980), 57, 68. 86 For the concept of musical styles being governed by syntactic and morphological ‘rules’ and analyzable through a modified linguistics approach, see e.g. Sloboda (1985). Page 20 80 ‘accompaniment’ to the tale being sung. It was this hypnotic interplay in Serbo- Croatian heroic song which fascinated Bartók in the end. 87 3.29 The metrical parallel suggests that a limited number of melodic phrases could emerge, and that these would eventually drive the process of oral composition, and no longer be driven by it. Thus, the South Slavic guslar, though his formulaic diction is continually varied, uses a fixed set of melodic formulae in a single metre. To press the analogy of metre and melody, we must suppose a state of the world—at least for Indo- European oral composition—in which melodies were not sung to certain fixed pathways such as those offered by piano scales or the strings of a lyre. Such melodic routes would result in time, a ‘tonal’ system derived through the ritualization of speech as song. 88 3.30 This model of melodic evolution produces a continuum of fixity, ranging from the determined melodic fragments of traditional formulae to the fluid customs by which non-formulaic phrases would be navigated in performance. It also follows that each of the subtraditions would hold in common a different body of melodic fragments and syntax, varying directly in proportion to the culture’s overall divergence from its parent and sisters. Accordingly, the melodic evolution of the Indo-European traditions should show patterns of synchronic and diachronic change closely akin to those of the associated languages. This is borne out by Bartók’s study of melodic distribution, which shows patterns precisely analogous to those of dialectal dispersion. In the Balkans, the ‘same’ melody is found in various regions, most easily recognized by features such as section structure, metrical character, ambitus, and melodic contour. The actual ‘scale’ or pitch-set of each proved unhelpful to Bartók, who found it difficult to decide when two melodic variants were distinct enough to warrant classi- fication as separate tunes. Sometimes, when tunes which had been accepted as 87 See Lord (1960), 37f. I was privileged to hear some this material in October 1997, by the kindness of M. L. Lord and M. Kaye. Selections from the Parry Collection have finally been made available with the reissue of Lord’s The Singer of Tales (Cambridge, Mass., 2000). 88 Wiora (1959), 203: “When we make music or listen to it, we have the keyboard, the tonal system, the totality of our scales in our minds; these make up the area on which we move, and of the whole tonal area which we realize in its entity, we let now one now another ring out. In ancient singing, on the contrary, the dividing lines between notes and the system imagined against it existed but in the kernel. The usual systems or the ‘succession of notes used’ in this singing are actually scales, i.e. keys, but in a broader sense, [from] which we must exclude everything that is added to it by the music of great civilizations”. Page 21 81 variants were ranged by degree of variation, the first of the series could no longer to be heard as a variant of the last, but was a strikingly distinct melody. 89 The same phenomenon has been observed in India—where the elaborate classification of raga is concerned with just this—as well as England and elsewhere. 90 Propp observed the effect in the distribution of Russian fairy-tales. 91 In song dispersion, such scalar differences within the ‘same’ tune might fairly be seen as ‘regional pronunciations’, directly analogous to dialectal differences in the spoken language. The closer the relationship between speech and song, the more these patterns will present a synchronic view of the Indo-European musical tradition in dispersion. 3.31 Clearly, such patterns must have existed in ancient Greece, and may be at the root of the musical . The word, which in a non-musical sense means ‘custom’ or ‘common law’, may also designate a musical entity which was open to interpretation and variation, but at the same time uniquely recognizable. 92 Compare the memorable duel in Stevenson’s Kidnapped, where each piper plays variations, known only to him, of a tune known by both; or the friendly competition set up by Parry between Avdo Mededovic and his colleague Mumin Vlahovljak. 93 The use of to describe birdsong might support this interpretation. When Alcman claims to know all the of birds, the human musical is clearly implied; indeed, this fragment is the first witness for both uses of the word, giving very early authority to the Greeks’ recognition of the analogy. 94 Elsewhere Alcman explicitly compares human and birdsong, 95 and Hesiod attests a musical sense to in his description of the 89 Bartók/Lord (1951), 15, 34. 90 Fox-Strangways (1914), 151ff. 91 Propp (1975), 114: “The distinction between theme and variant is totally impossible. Here there can be only two points of view. Either each alteration gives a new theme, or all tales provide one theme in diverse variants. As a matter of fact, both formulations express the same thing: the entire store of fairy tales ought to be examined as a chain of variants.” 92 See e.g. West (1992), 215-7; the testimonia for are assembled by Grieser (1937). 93 Lord (1980), 68. 94 Alcm. 40 PMGF; cf. 39; Alc. fr. 307c (Voigt)?; Pratin. fr. 1.5 (PMG 708); Ar. Av. 210, 1346; etc. Barker (1982-9), 1.250 rightly argues that the classical writers were largely speculating in their discussions of the Archaic , and that Alcman’s usage is not technical in the same way; but the literary evidence is sufficient to show that the musical existed in some form throughout the Archaic period; cf. Chadwick (1996), 206f. 95 Alcm. 1.100f. PMGF; 39; Anth. Pal. 7.19.1f. (Leonidas Tarentinus), which calls Alcman ’ (“the singer-swan of wedding songs”); cf. h. Hom. 19.16f.; Anth. Pal. 9.184.9 (Anon.). Page 22 82 Muses singing the laws ( ) of the gods. 96 But the association of birdsong with the lyre was already very ancient, being attested in the Mycenaean period by paintings and instrument design, 97 and obliquely in Homer’s archer-citharist simile, where Odysseus’ bow string is said to sing like a swallow. 98 The derivation of both and (“pasture”) from (“to distribute”)—if this is correct 99 —accords well birds’ use of song to delimit territory, a function which combines the musical and ‘legal’. Moreover, though each species has a single and distinctive call, there is a continuum of variation throughout the range. 100 It seem likely therefore that the Greeks would have been aware of the ‘same’ song being varied by region, just as they were familiar with the various spoken dialects. 3.32 We get frequent references in later literature to individuals, such as Terpander or even Timotheus, who composed . At first sight, this seems to contradict the identification of the as a traditional tune in dispersion. Yet in the melic revolution, with its emphasis on individual innovation, the word’s older meaning would naturally have evolved alongside the musical changes. The waning of the heroic song tradition, as represented by the increasingly classical status of the Iliad and the Odyssey, clearly attests the effacement of traditional distribution patterns. Of course, could be quite properly applied to a piece by Timotheus once it had been adopted by other musicians, given a musical culture in which broad interpretive powers were granted to the individual musician. In the Archaic period, especially, there must have been a certain amount of such freedom. The songs of Sappho, for example, were widely known and survived in recognizable form into the Classical period, yet the hypothesis of distribution in fixed form through notated ‘sheet music’ 96 Hes. Th. 66f.: . Ps.-Arist. Pr. 19.28 offers the explanation that prior to literacy laws were sung, and reports that this was still true among the Agathyrsoi of Thrace; Plato develops the association of the legal and musical extensively at Lg. 656c-660c, 799e; cf. Phdr. 278c; cf. Mart. Cap. 9.926 Graecarum quippe urbium multae ad lyram leges decretaque publica recitabant; Clem. Al. Strom. 1.16.78: 97 Anderson (1994), 4-7, 12f.; Younger (1998), plates 13 (Pylos fresco, Chora Museum, LH IIIB2-C), 14.1 (Pyxis, Chania Museum 2308, early LM IIIB). 98 Hom. Od. 21.406-11, cited in 5.14. 99 Chadwick (1996), 206f. has recently questioned this derivation, “and even if the connexion is proved, more research is needed on the history of the noun”. 100 This was pointed out to me by Dr. Richard H. Backus, Woods Hole Oceanographic Institution (communication). Page 23 83 is problematic in the extreme. Here, perhaps, the traditional art of melodizing poetry was still operating somehow within the new melic music—like the epic-melic fusion of the Homeric Hymns ( cf. 2.30, 5.0 )—so that, throughout the Greek world, trained musicians could give a musical performance directly from the text, if the or were specified. If this is correct, it is strong evidence for the early existence of a broadly unified Hellenic melodic art, of which epic singing was one exemplar. 3.33 This picture of ‘melodic dialectology’ might also illuminate two further aspects of later Greek music. The first is the existence, attested as early as Alcman ( cf. 2.31 ), of (later ) distinguished by region: Phrygian, Lydian, Dorian, Ionian, Cretan, Aeolian, and so forth. The use of such names to describe the octave species is a development of the later fifth century, perhaps one contribution of Eratocles, 101 and here it is right to suppose some systematization of early Greek practice through the regularizing effects of diatony ( cf. 1.4, 1.12 ). Again, this does not exclude the possibility that the diatonic octave species were also known throughout the Archaic period ( cf. 1.12 ); prior to Eratocles they may have had no names, or other names—such as Terpander’s sevenfold division of the citharodic ( cf. 7.25, 10.37 ) . Such regional styles are likely, at least in part, to have been conditioned by “the isolationism of the Dark Age”, 102 though ‘Phrygian’ and ‘Lydian’ may document, however distantly, the exchange of musical ideas with these cultures ( cf. 1.22, 2.5, 2.11, 2.15 ). Though there is a continuum of variation even within a spoken dialect, nevertheless there must be enough distinctive features found throughout the dialect area to warrant its unique classification. The regional metrical traditions are likewise marked out by conventions proper to each. 103 The same must have been true of the otherwise continuously varying melodic dialects, of which the early were expressions. 3.34 This is consistent with what is known about the education of singers in the Indo- European traditions, whether we suppose for the Greeks formal, regional schools of song like those attended by the Celtic bards, travelling such as Terpander and Alcman who might effectively impose certain standards on many communities during the course of their travels, or a combination of the two—recalling that Terpander was said to have established a musical ‘school’ in Sparta ( cf. 2.38 ), and the Lesbian may have been similar. The legendary guslar of South Slavic tradition was also 101 West (1992), 227; on Eratocles, see further 7.0. 102 West (1973), 181. 103 See West (1982). Page 24 84 remembered as travelling widely; 104 his comprehensive repertoire and reputed influence over singers everywhere symbolizes the broad unity of the tradition. The professionalism of Greek musicians is well illustrated by a host of performing names, historical and legendary—Araros the son of Aristophanes, Chairis, Choricius, Chorocles (father of Phrynichus?), Cycleus (father of Arion), Demodocus, Encomius (father of Pratinas?), Epicharmus, Eumolpus, Eunomos, Harmonides the aulete, Molpis, Phemius, Philochorus, Polymnestus, Polyterpus, Spendon of Sparta, Stesichorus, Terpes, Terpsicles—not to mention both Homer 105 and Terpander himself. These may have been taken as stage names by each, or given at birth by musician fathers intending to pass on their trade. Thus Demodocus and Phemius cannot be dismissed as fictitious merely because of their names; they may once have been renowned performers whose memory Homer honored for reasons of professional courtesy. In the Indo-European cultures, singers often formed a hereditary caste within the aristocratic stratum. 106 In Sparta, at least, -playing was passed from father to son. 107 Serbo-Croatian heroic song still seems to have been quasi-hereditary in the early twentieth century. 108 3.35 This inherited melo-dialectal variation may have been one tributary to the Aristoxenean genera and their diverse shadings ( cf. 1.24, 2.35 ). In cases of musical syncretism, it is common to find that two styles, after coexisting for some time, may coalesce into a distinct practice which features the strongest elements of each. 109 In the case of the African-American syncretism, we find the imposition of inherited ‘blue’ notes on European diatony. Likewise, the Terpander fragment suggested a juxtaposition and segregation of two musical styles in the early phase of seven-stringed music ( cf. 2.29 ). By the end of the Archaic period, however, and probably well before ( cf. 7.39 ), the ‘clear’ diatonic tunings were being ‘colored’ by musicians like Lysander of Sicyon, who introduced (“well-shaded colors”). 110 We might then see Aristoxenus as the first ethnomusicologist, making careful measurements against a diatonic grid through the application of Aristotelian methods of classification. The 104 See Foley (1999), 52f. 105 Nagy (1979), 297-300. 106 Watkins (1995), 71 107 Hdt. 6.60: . 108 Lord (1960), 22. 109 See Nettl (1985), and below. 110 Philoch. FGrH 328F23 = Ath. 14.637f-638a. See further 7.33. Page 25 85 musicians’ instincts must still have been alive and well for him to be able to make such nice distinctions; for the Aristoxenean measurements do not seem arbitrary or even particularly approximate. 111 3.36 It is against this continuum of melodic change that the fossilized ceremonial songs observed by Bartók and Wiora, and alluded to by Homer, must be understood. If each accompanied some ritual—a complex of actions resistant to significant change—the ceremonial song would more or less drop from the ongoing process of formation and reformation which characterizes a tradition of oral-composition. Having achieved perfection, it would not be recomposed on each occasion, and would endure as a snap-shot of the music-stream in flow, becoming what we understand as melody: a fixed tune. Kinship between languages is most easily revealed by those words which have preserved their ancient meanings the longest; those which, designating something basic and unchanging, had themselves no reason to change. Likewise, it is through the ceremonial songs of the cognate subtraditions that the character of Indo-European song must be established, as these are the only diachronic data available. While we must suppose that e.g. the harvest songs of each tradition will be as unlike-sounding as the respective languages, a continuous channel of preservation for the ‘form’ itself requires no imagination. 3.37 The dependence of metre and melody on poetic language, if it is right to suppose this as characteristic of Indo-European song, would go a long way towards explaining the seemingly analogous phenomena of linguistic and melodic distribution. The singer of oral-formulaic speech-song requires a fluency which seems as much linguistic as musical. 112 As with language, the handing-down of such an art is conservative in the extreme. A new generation does not devise a new language, but learns that of its parents. Likewise, the accomplishment of the younger singer is in the emulation of the elder, and this professionalism—in the case of South Slavic heroic song, the 111 See Winnington-Ingram (1932). 112 Lord (1962), 184: “As a boy he hears the old men sing, and he absorbs the stories and becomes acquainted with the phraseology and language of the poetry and with its rhythms. They become a part of him and his young mind begins to remember the tales and to form his thought in the pattern of the song. The process in the early stage is as unconscious as a child learning to speak, when he first listens to the sounds his elders are making”; cf. Lord (1960), 22. Page 26 86 legacy of minstrelsy in the medieval courts—“may be of great moment in maintaining a tradition”. 113 3.38 Poetic diction, while it is in constant flux alongside the spoken language, changes in some ways more slowly, protected as it is by the ritual of performance and by professional convention. Many archaic words and hapax legomena are preserved in Homer, the precise meanings of which the himself may not have known, feeling only “the atmosphere and the fragrance, and of course the actual magic, that clung about them.” 114 The very purpose of the tradition was conservation: the singers kept alive the memory of the past, the deeds of old heroes, and the technique and musical lore of the ancient teachers. Thus Mnemosyne (Memory)—the mother of the Muses—was deified by the singers, personifying the unfathomable depths of musical tradition. To break with the technique of one’s elders would destroy the medium which preserved these . This mission of conservation was most rigorous in Vedic tradition, where its success over the millennia is easy to measure. Here too, however, unintentional, cumulative change is shown by the disagreement of ancient theory and current practice. 115 3.39 Thus the melodic element of an Indo-European musical tradition could well have evolved in strict company with, and no faster than, the metrical element, poetic diction, and the language itself. In each case this evolution was so conservative as to allow only unintentional and cumulative change—paradoxically through the contributions and influence of individual singers—to the tradition’s essential features. This is the essence of historical language kinship, for despite the huge differences between the Greek, Slavic, and Indic languages, the proven kinship between them, and the essential sameness which lurks just beneath the phonological detritus, is more striking still. In Indo-European metrics, the basic distinction between long syllables and short is one constant, and certain fundamental patterns survived in recognizable form. On the basis of the Greek and Slavic parallels, it seems possible that some sort of accent- or word-melody may have been an equally stable part of Indo-European oral composition. 3.40 But was limited melodic compass one of the essential qualities of Indo-European song? This would follow on the hypothesis of accent-melody, since, according to 113 Lord (1962), 181f.; for the young singer’s training, Lord (1960), 20-29; for the singer’s status in the medieval courts, Lord (1960), 16. 114 Murray (1927), 42f. 115 See Fox-Strangways (1914), 246f. Page 27 87 Dionysius of Halicarnassus, the Greek pitch-accent spanned an approximate (i.e. non- resonant) fifth. 116 If so, under what conditions would melodic range change? Why do we find the Greeks using heptatonic scales in the Archaic period, but vestiges of narrow and ancient melody in pockets of the Balkans today? Bartók’s research provides the key. As he discovered, songs with the archaic pan-Slavic qualities were distributed more densely in the territories where Turkish influence had been minimal; by contrast, melodies of wider range were found in areas, such as Bulgaria, where there had been active Turkish settlement for some centuries. 117 A second and more erosive force has been European art music, flowing outwards from the cosmopolitan cities. In areas less subject to this diatonic stimulus, songs of restricted melodic scope persisted, albeit dwindling steadily. This is a good illustration of how a resonant tone- structure may serve as an international musical standard, a ‘metric system’ to which archaic intonation may be assimilated ( cf. 2.8 ). The same phenomenon has been observed in modern Greek folk music. 118 3.41 With the expansion of melodic range, the possibilities of tonal contextualization greatly proliferate. The traditional melodies of the Balkans had often come to be heard as fragments of diatonic scales, their ancient tonal contexts forcibly reinterpreted against the bimodality—major and minor—of Western art music. 119 At the same time, syncretism involves mutual adjustment. These diatonic scales have been adapted to local needs, whereby typically Slavonic ‘accidentals’ have been superimposed on the diatonic substrate to create such syncretic pitch structures as the octatonic scales used by Bartók and Stravinsky. I know of one Rumanian melody which uses the sequence D-C#-C-A —identical to an ancient Greek chromatic tetrachord. These parallels are important for understanding the Greek music of the post-Orientalizing 116 D. H. Comp. 11 (126.3f. Roberts): (“Now the melody of speech is measured by one interval, closest to that which is called a ‘fifth’”). It is important that the interval is made approximate: it divorces pitch accent from the tonal intonation proper to resonant intervals. Thus, any attempt to recite Greek language or poetry by modulating the voice woodenly between musical intervals does no justice to the subtle tonality implied here. 117 Bartók also noted the difference between rural and urban Turkish styles. Both use melodies of wide scope, but the peasant style is of Central Asiatic origin, while the urban is heir to the Near Eastern tradition of octave scales: see Bartók/Lord (1951), 55 n. 45. The latter surely goes back to the heptatonic tradition of Mesopotamia. 118 Beaton (1980), 9. 119 Cf. Bartók/Lord (1951), 59-60; Wiora (1959), 203. Page 28 88 period. South Slavic song demonstrates the self-sufficiency of ancient oral composition, proving that there was no evolutionary imperative towards an expansion of melodic range, the ‘perfection’ of melodic intonation in conformity with resonant tone-structures, or even the crystallization of accents into precise melodic pitches. Limited compass and vagrant, non-diatonic intonation were, broadly speaking, perfect and unevolving traits within the evolving tradition, invulnerable in the absence of the external stimuli which might induce mutation. 3.42 If the Slavic parallels are valid, the melodic tradition of those Indo-Europeans who came to Greece should have pursued its course until deflected by similar circumstances. Accordingly, the expansion of melodic compass, the standard use of a seven-stringed lyre, and the primacy in later theory of a resonant tone-system, must be explained by the Greeks’ contact with a cultural sphere in which these things were standard. Mesopotamian diatony, as we have seen, was the core of such a tradition, already constituting a system of great refinement—one might say completion—and disseminated widely throughout the Near East. If this musical culture was relatively stable throughout its range, as the texts indicate ( cf. 1.6 ), the Greek and Indo-Iranian encounters with the Mesopotamian musical sphere involve a constant which may help to explain such Greco-Indian parallels as those noted by Fox-Strangways (1914). For the Greek Orientalizing period itself, the relationship of Cyprus and the Aegean periphery to the central and expanding superpower of eighth-century Assyria—carrying the cumulative weight of a millennium and more of Mesopotamian culture—might be compared with the rapid modification of hundreds of ancient musical traditions which is going on today, due to the ‘global village’ effect. 120 The Balkan material studied by Bartók is itself a good illustration of this. Apart from the analogous cultural dynamics of the ancient and modern situations, diatony features in each case as an essential musical catalyst. 3.43 As I see it, then, the Terpandrean tradition documents the Greek musical experience of the Neo-Assyrian period. The model presented in this chapter is reductive, of course, 120 See especially Nettl (1985), 20, who distinguishes two broad levels of response, which give rise to a wide array of syncretic phenomena. “Modernization” is “the incidental movement of a system or its components in the direction of Western music and musical life, without, however, requiring major changes in those aspects of the non-Western tradition that are central and essential.” “Westernization” is “the substitution of central features of Western music for their non-Western analogues, often with the sacrifice of essential facets of the tradition”. If one substitutes ‘Oriental’ and ‘Orientalization’, many of the cases surveyed by Nettl offer stimulating ways of thinking about musical change in the Greek Archaic period. Page 29 89 and pre-Orientalizing Greek music must have been more varied than it allows. The tradition of oral composition, to which the model is most relevant, was but one element of a larger musical culture; the Homeric art was but one subtradition of this, descending from a specialized development of the Mycenaean period. It is essential to remember, however, that the hexameter derives from the same matrix as the lyric metres of Lesbos, and this strongly supports the idea of a unified musical tradition transcending generic distinctions. Likewise, Bartók was able to identify universal pan- Slavic characteristics—the same limited range and non-resonant intonation which I have proposed as characteristic of the Hellenic tradition. The fundamental problem in understanding Homeric song is that we simply do not know what it sounded like, and never will. All the same, it is safe to say that Greek music as a whole in the Geometric period conformed, in the most general terms, to a ‘system’ of its own which contrasted sharply with Near Eastern diatony, and that these disparate elements could form the basis of a lasting musical syncretism. Clearly, we cannot suppose that every expression of this musical culture followed the conventions of “four-voiced song”. Yet oral composition was central to this tradition, being both its high art music and a key instrument of cultural preservation. The Ionic epic was, besides, the preeminent art-music of the eighth century, and the , as a professional class, would have been the principal adapters during a large-scale musical movement. Terpander’s juxtaposition of and thus brings into focus the principle musical forces involved in the melic revolution, and reveals two key elements of the Greco-Asiatic syncretism.
Öffentliche Performances im Rahmen des Internationalen Symposions *Performing Ancient Greek Music Today"
Mitwirkende: Ancient Orchestra, Gardzienice Stelios Psaroudakes, Athen Musica Romana, Bonn (dir. John C. Franklin) Chor des Instituts für Klassische Philologie, Wien Moderation: ao. Univ.-Prof. Dr. Georg Danek
Termin: 29.09.2003 19:00
Ort: Theatersaal der ÖAW Sonnenfelsgasse 19, 1. Stock A-1010 Wien Program
Kontakt: Kommission für Antike Literatur der ÖAW Mag. Dr. Stefan Hagel Tel: (+43 1) 51581 / 3448 E-Mail: Stefan.Hagel@oeaw.ac.at
Volume 4 (2003) Frédéric Davidovits Circiter tertia parte ponderis (Vitruve II, 5) Christina de Domingo Alan Johnston A petrographic and chemical study of east Greek and other archaic transport amphorae Dimitris Paleothodoros The Pithos painter Nicholas Victor Sekunda The stele of Thersagoras of Polyrrhenia from Demetrias Βίλη Αποστολάκου «...ΚΑΙ ΛΑΤΟΣ ΓΑΡ ΕΝΕΓΚΑΤΟ ΤΟΝΔΕ...» ή Λατίων Προσωπογραφία Παύλος Χρυσοστόμου Συνεισφορές σε λατρείες θεοτήτων και ηρώων από την Βοττιαία και την Πιερία της Μακεδονίας Georgia Alexopoulou Dimitra Tsangari Deux tresors hellenistiques de Pselalonia de Patras Nahum Cohen A customshouse receipt Despina Iosif Caesar the warrior versus Jesus the peacemaker? Chryssi Bourbou A survey of neoplastic diseases in ancient and medieval Greek populations Stelios Psaroudakes Archaeomusicology and Ethnomusicology in dialogue Volume 3 (2002) Antonio Corso Classical, not Classicistic: Thoughts on the origins of "Classicizing Roman Sculpture" Antonios Kotsonas The rise of the polis in central Crete Μαρία Σταυροπούλου-Γάτση Γεωργία Ζ. Αλεξοπούλου ΑΝΑΚΤΟΡΙΟ - ΑΚΤΙΟ ΑΚΑΡΝΑΝΙΑΣ. Συμβολή στη μελέτη της οχύρωσης της πόλης του Ανακτορίου και στην τοπογραφία της ευρύτερης περιοχής David Jordan Κατάδεσμος από τον Κεραμικό Αθηνών Παύλος Χρυσοστόμου Συμβολές στην ιστορία της ιατρικής στην αρχαία Μακεδονία Eva Apostolou Rhodes hellénistique. Les trésors et la circulation monétaire Robert C. Knapp Greek Mercenaries, Coinage and Ideology Nahum Cohen A Poll-tax Receipt David Jordan 'Αλλο ένα παράδειγμα του Ψαλμού 90.1 'Αννα Λάγια Ραμνούς τάφος 8: ανασύσταση της ταφικής συμπεριφοράς μέσα από το πρίσμα της ταφονομικής και ανθρωπολογικής ανάλυσης Volume 2 (2001) Antonio Corso Attitudes to the Visual Arts of Classical Greece in Late Antiquity Vassos Karageorghis Some innovations in the burial customs of Cyprus (12th-7th centuries BC) Dimitris Paleothodoros Satyrs as shield devices in vase painting Κατερίνα Ρωμιοπούλου Πτηνοί Έρωτες ύπνω εύδοντες Martha W. Baldwin Bowsky Gortynians and others: the case of the Antonii Ιωάννα Κολτσίδα-Μακρή Ο θησαυρός Γυθείου IGCH 170 Vassiliki E. Stefanaki Sur deux monnaies de bronze inedites d'Hierapytna. Monnayage hierapytnien et timbres amphoriques a l'epoque hellenistique Maria Daniela Trifiro The hoard Αρκαλοχώρι-Αστρίτσι 1936 (IGCH 154) David Jordan Ψήγματα κριτικής, 4-10 [συνέχεια του άρθου "Ψήγματα κριτικής", Ευλιμένη 1 (2000), 127-131] Anagnostis Agelarakis On the Clazomenian quest in Thrace during the 7th and 6th centuries BC, as revealed through Anthropological Archaeology Chryssi Bourbou Infant mortality: the complexity of it all!
Volume 1 (2000) Anagnostis Angelarakis Aspects of demography and palaeopathology among the hellenistic bderetes in Thrace, Greece Antonio Corso Praxitelian Dionysi Angelos Chaniotis Hellenistic Lasaia (Crete): a dependent polis of Gortyn. New epigraphic evidence from the Asklepieion near Lasaia Εύα Γραμματικάκη - Νίκος Λίτινας Μαγικός κατάδεσμος Nikos Metenidis Zu den Denarbildern des CN. PLANCIUS Manolis I. Stefanakis Kydon the oikist or Zeus Cretagenes Kynotraphes? The problem of interpreting Cretan coin type Ioannis Touratsoglou The price of power: Drachms in the name of Alexander in Greece (On the occasion of the Thessaly/1993 confiscation) Σελήνη Ψωμά Σκάψα και Κίθας. Η νομισματική μαρτυρία David Jordan Ψήγματα κριτικής Nikos Litinas A private letter of the VI A.D.
genos=tetrachord osztasa
a mozgok toposa, tasis valtas
lichanos es parhypate=mozgok egy "otthonos" toposon belul
a lichanos a toposaban barmely ertelet felvehet
~apiria theoretikusa, - gyakorlati korlatok
Ehoume anangi gia tis ergasies, gia na katanoisume kalitera ton Aristoxeno, kai genika tin archea elliniki mousiki, na shediasoume diagrammata, pinakes, dimiurgisume ikones. Avto sto skopo milisa me tin Katerina Toraki,-(toraki@tee.gr tel:210 3245180, 210 3291714)- dievtintria to bibliotiki Techniko Epimeletirio tis Elladas, zitontas simbouli. Itan poli tethiki i apandisi, kathe savato mas exasfalizi ena grafio, pou boroume na sizitisoume, malista kai na kaloume enan 'idiko', filo mas, opos a kurios Kaligeropoulos. Eine mathematikos, gliptis kai endiaferete to archeo elliniki mousiki, grafi kai technika biblia, gia to archeo theatro, pou anaferi kai to organa. Etsi me hara anakinoso, pos dipla to kiriakatiko aristoxeniko kiklo, ehoume sabatjatika proini sinandisi, pou mathenoume pos boroume na ekmetalevsoume to upologisti gia mousikologiki erevna. Episis antistiho "steki" dimiurgite kai sto Elliniko Kentro Erevnon, pou borite na me vrite kathimerina, na epikinonisoume metaxi mas, allazondas apopsis, plirofories, einai kalo an enas boitai ton allon! :) Idi ehoume 'diktioti' gia prosvasi, anihnevsi gia graptes ka ikastikes martiries. Tis leptomeries tha leme apo konda.
...amig 'befutnak' a csucsforgalom miatt keslekedok, kis ismetles (ne maradjanak le a 'torzsanyagrol':)!
Mint emlekeztek, atfutottuk az okori zeneszek listajat, a 'jelenlevok' kozul kiemeltuk a foszereploket, koztuk is az elen Arisztoxenost, szoltunk kalandjairol, mar amit keves hir eljuthat hozzank kuloncsegerol, robbanekony termeszeterol, tanulmanyairol a filozofus kiraly Arisztotelesz mellett, mint a tronjara varomonyastol, majd csalodott, duhos tavozasarol Lyceumbol. Belelapoztunk konyvebe alapfogalmak, meghatarozasok utan kutatva, hogy elindulhassunk az okori zene teoriajanak megismereseben. Igy talalkoztunk a phtongussal mint 'kepzettel', mely anyagtalanul az elmenkben, emlekeztunkben rajzolt vonalon egy pontra, tasisra szallo, ereszkedo, emelkedo hang (lasd: madarak amint megulnek, fel-ala ropdosnek a villanydrotokon:). Megjeyzendo, hogy az okoriak phtongus fogalma elter a mienktol, nem kotodk jelzese automatikusan az idotartamhoz, mint a mi kottafejeink. Az ido erzekeletetesere a gorogok egy mas szisztemat hasznaltak. A diasztema a regiek szerint ket phtongus kozti tavolsag, ezt egy elkepzelt vonalon, diagramman abrazolhatjuk. Megelolegezve, meg magyarazat nelkul nehany fogalom,- hogy hozzaszokjunk, - diasztemaink lehetnek szimfonikusak es diafonikusak, nagysag szerint dia tesszaron, dia pente, dia pason, ezeket elso szomfoniaknak (protes sumfonies) hivjuk. (Szimfonia es diafonia kepzethez, ahogy a kaveban a tej es a cukor, vagy mint az olaj es a viz:). Persze nem egeszen az "izles" szerint kozelitunk ezen fogalmakhoz az okoriakkal, hanem valamifele rokonsag, vegyules "krasis" feltetelezesevel. A szimfoniakkal maris jo alkalom nyilik arra, hogy osszeveszenek rajtuk Arisztoxenos es Pythagorasz hivei. Mig Arisztoxenos a szimfniak egymasra pakolasat, igy rokonitasat termeszetesnek tartja, nem eszlelven fulevel zavaro kulonbseget, a matematikusok szamai eleteresrol, massagrol kiabalnak. Fulunk nem oszt, nem szoroz, nem sokszoroz, lekerekit, amit felfog, az erzes melyet a fejeben 'megmunkal', es nem 'logos'. Ahogy Arisztoxenos "mer", az a matematikusaink szerint szemfenyveszto mereszseg, megengedhetetlen pontatlansag. Es ahol meresre kerul a sor, elokerul a 'merce', mellyel, vagyis inkabb ennek urugyen jol elnaspangoljak egymast az ellenlabasok. Arisztoxenosz "nagysaga" (megethos) a tonussal igazitott ravaszkodas. Honnan a tonusa? Hat azt csak o tudja, mert konyeden elovarazsolja a kabatujjabol, mint affele hangbuvesz, azt allitva, hogy mindenkinek ott a zsebeben, mint orokseg, igy nincs aki ne tudna vele banni, elszamolni vele a hangok birodalmaban. De honnan a tonus, kerdhetjuk makacsul? Mire a valasz, hot ott, ahol a dia tesaron es a dia pente, csak ossze kell vetni oket: P-T=t. Fofon egyszeru, senki sem tevedhet, nyomban raismer!:) Aki nem, az vessen magara... :)Persze nem igy a tobbi diasztema, itt bizony gyakorolni, probalni kell, mig ratalal a hangunk. Igy nez at a matematikusok feje felett Arisztoxenos, semmibe veve probalkozasukat, hogy ket egyenlo hosszusagu hurral jatszva, mericskelve bestrigulazak a tonust mint 9/8 aranyt, jo szokasuk szerint szamokkal merve a mindenseget, (de vigyazat, mertekegysegeit daktilus,pous, pyhis, bima, vagis uj, konyek, lepes, utobbi 0,77 meter, stb.). Mielott meg tovabb lepnenk, ismetlesul meg megemlitjuk, hogy matematikusaik tiltakozasara, miszerint a tonus nem oszthato ket egyenlo felre, Arisztoxenoszunk csak flegman megjegyzi, hogy marpedig a fule mast sug neki, es teketoria nelkul bevezeti a feltonus fogalmat (imitonio), ehhez aztan hozzatesz, elvesz, ditonust alkotva, vagy a tonus tort reszeit, melyeket csak osszefoglalo neven diesisnek keresztel. Nagy fantaziaval kigondolja, hogy ha a tonust tizenket 'fantasztikus', hipotetikus, moriaval tagolja, ezzel hasznos szerszamot nyer az eszkoztaraba a zenei jelensegek leirasara. Pruszkoljenek csak ettol, toporzeoljanak megukben a szam maniasok.
Mondjuk meg a diasztemakra,- a kesobbiekben kifejtve tartalmat,- hogy lehetnek folyamatosak (sinehi), vagy nem folyamatosak (asinehi), de ennek megertesehez, a helyes dallam epitesehez, elobb meg kell baratkozni a szisztemak, a genos fogalmaval. A szisztema mem mas, altalaban veve, mint barmely phtongusok gyujtemenye. Szisztemaink, mint a kovetkezokben tapasztaljuk, ket modon is osszeallhatnak, osszesimulassal (siseuxi) es egy kapcsolo tonussal (diazeugsi). Kozelebbrol, a szisztema valogatott ftongusok sora, irott es iratlan torvenyeknek engedelmeskedve. Igy pontositva, nem minden a szerencsere bizott fhtongus halmaz ertekelheto, elfogadhato, csupan a zenei erzeket kielegito (irmozmeno). Es itt kovetkezik egy peldatar, a szamtalan lehetosegbol, Arisztoxenos moriait segitsegul hiva a leirasukhoz. Mig a moria a legkisebb 'hypotetikus' mertekegyseg, a tetrachord a legkisebb alap szisztema, melybol mas redszerek epithetok. Nincs idegenebb, tavolibb fogalom szamunkra, mint a tetrachord, negy hang sora, ahol a ket szelso 2,5 tonus tavolsagra esik egymastol. A szeleket mozdulatlan (akinitous) phtongusoknak, a kozteseket mozgoknak (kinoumenous) hivjuk, melyek valtoztathatjak helyuket.Tetrachordunk osztasa: hupati, parhupati, lichanos, mesi, az elnevezesek a lyra hurjaira utalnak, igy a hupati a legmelyebb, a parhupati, az hupaten tuli, a lichanos a mutatoujj (valoszinuleg ez eri el a szoban forgo hurt legkonnyebben), a mesi, jelentese szerint kozep, es valoban a het huru lyra kozepso hurja, ket osszesimulo tetrachord 'metszespontja'. A hupate jelentese megteveszto lehet, mivel melysege ellenere, szo szerint a legmagasabbat, mas szovegkornyezetben a legmeltosagosabbat jelenti. Nemelyek szerint ez azzal magyarazhato, hogy az okorban a hangszer magasabb fekvesben kiserte az istenhez szolo mely fohaszt. Ha ez igaz, akor itt nem 'geometrikus', hanem lelektani az ertelem. Igy lichanosunk, mivel nincs stabil helyhez kotve, tanctereben szabadon tancikalhat, csakugy mint a parhypate. Ha ezen belul maradnak, ugy dallamba illok (emmelis), ha kilepnek, dallamtorok (ekmelis). A parhupathe tere kisebb a lichanosenal, kevesebb a szabadsaga. A 'topos' a mozgastere a koztes phtongusoknak. (Ezt kesobb egy szemleletes diagrammaval erzekeltetjuk.) Vegyetek elo ceruzat, negyzetracsos fuzetet...:)Mondottuk, hogy a tonus=dia pente - dia pason. A legkisebb egysegunk a dodekatimorio (1/12 tonus).
Tetrachordunk 30 moria. Kis turelemmel folrajzolhatjuk fuzetunkbe a lichanos es a parhupate topost. Ezt kesobb finomitjuk, ujabb egysegekre tagoljuk. Erre azert van szuksegunk, hogy erzekletesen megjelenithessuk a kulonbozo tetrachord fajtaknak (genos) termeszetet. A genos nem mas, mint tetrachordok finom osztasa, ezek szerint lehetett a lyrat hangolni. A valasztek boseges, elmeletileg vegtelen a variaciok szama, mondja Arisztoxenos, de azert a gyakorlat ezt realisan szukiti. Arisztoxenosz a hasznalatban levok kozul harom csoportot, es alosztalyait emeli ki, mint kozkedvelteket, osszesen hat "szint" (chora), meltatva a regiek kozul a meltatlan kiszorultak szepseget, valtozatossagat. Igy ismerunk diatonikus, chromatikus, es enharmonikus genosokat, fajtakat. (Ezen fogalmak gyakran a maig "vandoroltak", hasznalatosak a zenei teoriakban, de vigyazat, megvaltozott az ertemuk!) A diatonikus kozel all hozzank, mig az enharmonikus bizony meg az okoriakat is 'megizzasztotta". A genosok szinei kozul most csak futolag megnevezunk nehanyat,a pontos koruliras nelkul, mely szavakkal kisse nehezkes, de megprobalom idemasolni a kovetkezo levelben a diagrammat, melyrol 'leolvashato' a szerkezetuk. Igy letezik lagy (malako),es feszitet (sundono diatonikus genos, a chromatikus genosnak a szinei (chroa) a lagy, a hemiolikus (feltonusu), es a tonikus. Ezen tetrachordok mozgo phtongusainak hatarpontjait (topos) Aristoxenos az alaptol es a felso vegtol indulva 'lovi be'. Megadhatjuk ezen tavolsagokat diasztema nevekkel, vagy moriakban. Igy az enharmonikus genos moriai 3+3+24=30. A sindono diatonikuse 6+12+12=30. A lagy diatonikus 15+9+6=30. A tonikus chromatikus: 6+6+12=30. Az enharmonia 3+3+24=30. Minderrol reszletesebben, es remelem hogy sikerul, szemleletes diagrammaval, holnap.
Le "nuances" nel Trattato di armonica di Aristosseno di Taranto
A. Bélis, Les "nuances" dans le traité d'Harmonique d'Aristoxčne de Tarente
"Revue des Etudes grecques", 95, 1982, 54-73"
Traduzione di Matilde Battistini
Introduzione
Le Chroai o Chroiai sono, nella teoria armonica greca, le diverse varianti che ogni genere ammette per la posizione delle due note interne mobili del tetracordo: la lichanos e la parhypate. I musicografi ammettono tre generi (enarmonico, cromatico e diatonico) e, in generale, sei "nuances" o, se si vuole tradurre con piů esattezza il termine greco, sei "colorazioni"[1]. Aristosseno di Taranto, autore del piů antico Trattato d'armonia che ci sia pervenuto in buono stato, č anche il primo ad aver introdotto in musica la nozione di genere (génos) e il primo ad averne fissato le specie[2]: le colorazioni. Č noto che Aristosseno costruisce un sistema musicale i cui principi e il cui metodo si oppongono a quelli dei Pitagorici. Ora, lo sforzo dei Pitagorici (in particolar modo di Filolao e di Archita) consisteva nella definizione dei rapporti numerici degli intervalli di quarta, di quinta, d'ottava e di tono (differenza tra la quinta e la quarta), ma non nel calcolo degli intervalli di un tetracordo di riferimento, colorazione per colorazione, genere per genere: in effetti, essi lasciavano ai musicisti empirici, a coloro che si affidavano al loro orecchio - una cura inutile, visto che non riguardava gli intervalli sopra elencati[3].
Ma il calcolo delle sfumature non č in contraddizione con le teorie dello stesso Aristosseno che rimprovera ai maestri di musica di regolarsi sugli strumenti ed ai Pitagorici di procedere per calcoli? Come definisce Aristosseno le "colorazioni"? In che cosa egli resta fedele ai suoi principi e al suo metodo nella determinazione delle sei colorazioni?
Il Trattato d'armonia esamina in due riprese la questione delle colorazioni dei tre generi; una prima volta, nel libro I (Meibom, 21.32) sotto la denominazione di [differenze dei generi], la seconda volta nel libro II, [divisione del tetracordo] (Meibom, 46.20). Perché ritornare due volte sullo stesso soggetto? Si tratta di una ripetizione pura e semplice, o č il metodo espositivo che si rinnova?
I
Prima esposizione (Meib. 21.32-27.14)
I commentatori non hanno l'abitudine di considerare questo lungo testo nella sua interezza, ma si limitano solamente al particolare delle "colorazioni" (Meib. 24.15-26.14). Ora, sembra indispensabile comprendere sino in fondo il percorso d'insieme che conduce Aristosseno al suo calcolo, cosě come alle conclusioni che ne trae; in breve, avere una visione generale delle sue dimostrazioni.
In questo libro I, egli cerca di determinare "da dove ed in che modo nascano le differenze di genere",[4]. Per prima cosa egli constata che il primo degli intervalli consonanti comprende quattro suoni in cui i suoni mobili e i suoni fissi sono in ugual numero, qualunque sia il genere. Egli sceglie di prendere per tetracordo di riferimento quello che va dalla mese all'hypate.
Perché questa scelta? Aristosseno apre qui una breve parentesi per giustificarla: tra tutti i tetracordi, questo č il piů conosciuto da tutti coloro che si occupano di musica; come tale, č indispensabile (anankaion) osservare in che modo esso sia toccato dalle differenze di genere. Servirŕ quindi da paradigma. Per il momento, lo si constata, Aristosseno non si propone altro che di procedere attraverso una sorta di processo induttivo, fondato sulle osservazioni fatte a partire da un esempio particolare. Tuttavia, egli subito afferma di vedere negli spostamenti della lichanos e della parhypate "la causa dei generi" :
[Il tendere e l'allentare le note naturalmente mobili sono causa delle variazioni dei generi][5].
Egli č il primo musicista ad attribuire una "causa" ai generi e a identificarla: si tratta per lui di un fatto evidente, che non ha bisogno di essere argomentato e che č sufficiente riconoscere (faneron).
Ora che i principi generali sono posti, la dimostrazione puň cominciare. E immediatamente, essa si situa nel cuore del sistema di Aristosseno: per determinare le colorazioni, si procederŕ definendo il luogo (topos) delle note mobili[6], cioč assegnando dei limiti alle "tensioni e agli allentamenti", che sono le due forme del movimento subito dai due gradi interni del tetracordo.
Per cominciare, il luogo della lichanos: esso č contenuto nei limiti di un intervallo di un tono (Aristosseno si riferisce qui alla definizione di tono, dato nel paragrafo precedente lo studio dei generi). Segue la spiegazione: la lichanos non puň allontanarsi dalla mese per meno di un tono né per piů di due toni. Conformemente al procedimento induttivo, al quale Aristosseno invitava il suo pubblico piů colto, egli si richiama all'esperienza dei musicisti per far loro ammettere la lichanos ditonica, e promette loro una dimostrazione ulteriore[7]. Di passaggio, egli attacca fortemente le perversioni della musica del suo tempo, che assimila al genere cromatico delle combinazioni, le quali non sono adeguate né alla struttura né alla natura della musica: si vede qui che ad Aristosseno preme di non uscire dal ruolo di teorico dei generi, e di criticare quei musicisti che snaturano la melopea introducendovi l'anarchia, la quale non puň costituire l'oggetto delle leggi armoniche.
Viene poi il luogo della parhypate (Meibom 23.24). Esso si estende su un diesis elachiste, cioč un quarto di tono: la parhypate non puň avvicinarsi all'hypate piů di un diesis, né allontanarsene piů di un semitono. Qui entrano in gioco due nozioni peculiari al sistema di Aristosseno, tramite le quali egli si oppone alle teorie dei suoi predecessori: per prima cosa, l'affermazione che il tono sia divisibile in due parti uguali, e Aristosseno č certo il primo a introdurre in musica l'espressione: la metŕ del semitono (to emisu emiseos tonou)(Meib. 23.29); inoltre il concetto di sunaphe: quando si parla di note mobili e dunque dei loro spostamenti, e nel caso in cui queste note siano vicine, allora accade, come in questo caso, che i loro luoghi abbiano in comune uno stesso limite: questo limite sarŕ, dice Aristosseno, quello della lichanos piů bassa e della parhypate piů alta. Tutta la dimostrazione č condotta in funzione delle acquisizioni precedenti: distinzione dei suoni fissi e dei suoni mobili, divisioni del tono. Č noto che i Pitagorici non ammettevano che il tono fosse divisibile in due parti eguali, perché il rapporto 9/8, che si ottiene sottraendo una quarta da una quinta, "non ha metŕ"[8]: in effetti, il semitono giusto sarebbe la radice quadrata di 9/8, in modo che, moltiplicata per se stessa, essa dia il rapporto 9/8 che definisce il tono intero. D'altra parte, come indicato nel piano del suo preambolo (Meib. 4.26-32), Aristosseno definisce innanzitutto gli spostamenti dei gradi mobili, che sono la causa dei generi, e l'estensione del loro luogo, prima di analizzare i generi e le colorazioni che ne sono la realizzazione[9]. Si noterŕ che Aristosseno non pretende di procedere dimostrativamente in questo primo libro: č per questo motivo che egli scrive, a ogni tappa della sua esposizione: "Questo dunque si ammetta..." (Meib. 22.13); "...sia dato cosě" (Meib. 23.25); " Si stabilisca che..."(Meib. 24.3): cosě facendo, egli agisce in conformitŕ con il metodo progressivo che si č dato, il quale parte da un esame generale (katholou) dei fatti, che ricevono delle definizioni sommarie, fino alla dimostrazione delle leggi armoniche, una volta ridefiniti e distinti i fatti con precisione[10]. L'esposizione che noi leggiamo nel libro I illustra esemplarmente questo principio metodologico mettendo in gioco le nozioni che maggiormente scuotono le teorie dei Pitagorici.
Con prudenza, prima di iniziare l'esposizione delle differenti sfumature, Aristosseno precisa che dirŕ piů tardi se "la quarta č misurata da uno degli intervalli piů piccoli, oppure se essa non č commensurabile ad alcuno"[11], ed aggiunge: "dal momento che č evidente che essa consta di due toni e mezzo, assumiamo che tale debba essere la sua estensione"[12]. Senza far polemica, Aristosseno afferma qui qualcosa che scandalizza i suoi avversari: che la differenza tra la quarta e il ditono sia un semitono, sia una evidenza, cioč una evidenza per l'orecchio; laddove i Pitagorici elaborano calcoli per determinare l'estensione che deve avere il resto della quarta (dal nome eloquente di limma), Aristosseno fa il contrario: egli si regola sull'evidenza dell'orecchio e respinge tutte le teorie che non si accordano ad essa[13].
Ultimo preliminare prima della determinazione delle colorazioni: la definizione di pycnon: "il complesso di due intervalli la somma dei quali forma un intervallo piů piccolo dell'intervallo restante della quarta"[14]; da qui questo termine che esprime a meraviglia l'idea del restringimento degli intervalli all'interno del tetracordo.
La determinazione delle sei sfumature viene condotta in tre momenti;
estensione dei pycnon a partire dalla posizione della lichanos: senza analizzare in dettaglio le posizioni rispettive della lichanos e della parhypate, Aristosseno esamina solamente ogni colorazione per determinare se essa possiede un pycnon o no (Meib. 24.15-25.11);
calcolo comparato in parti di tono degli scarti che separano le lichanoi nelle diverse sfumature (Meib. 25.11-26.9);
luoghi delle lichanoi (Meib. 26.9-14)
1. I commentatori non hanno detto nulla a proposito delle strane incoerenze di questi testi: le classificazioni non concordano all'interno dei due primi paragrafi; nel momento in cui Aristosseno si prende cura di numerare le sfumature che egli si accinge successivamente a studiare, le sue due esposizioni divergono:
Posizione testo: Meib. 24.16-31 Posizione testo: 24.31-25.11
1-2
[il piů piccolo pycnon: di due minime diesis, enarmoniche o cromatiche]
[Le lichanoi, quella dell'armonia, quella del colore]
I-II
[Le lichanoi che delimitano i due primi pycnon sono state giŕ nominate]
3
[Il terzo pycnon...]
III
[la lychanos che limita il terzo pycnon ed genere cromatico, al quale appartiene, č detto cromatico emiolico]
4
[un quarto pycnon: tonico]
IV
[la lichanos che limita il quarto pycnon č cromatica, ed il genere cromatico, al quale appartiene, č detto cromatico tonico]
5
[Quinta scala: quella formata da un semitono e da una volta e mezza un semitono]
V
[La lichanos che limita la quinta scala considerata... č la diatonica piů grave]
6
[La sesta scala formata da un semitono e da un tono]
VI
[La sesta scala : la (sua) lichanos č la diatonica piů alta]
Come dimostra questa tavola, Aristosseno passa sotto silenzio la terza combinazione del pycnon: si ignora l'estensione del suo pycnon (colonna di sinistra); d'altra parte, sopraggiunge una inversione tra il cromatico tonico e il cromatico emiolico, rispettivamente 4 e 5 nella colonna di sinistra, e IV e III nella colonna di destra. Di conseguenza, il genere cromatico emiolico succede indebitamente al cromatico tonico nello studio dell'ampiezza dei pycnon. Sempre, in questo primo studio, contrariamente alle apparenze, non č la terza colorazione che manca, bensě, di fatto, la quinta: diatonica grave, che ritrova la sua posizione legittima nell'enumerazione del nome delle sei colorazioni. Questo č anche il primo sistema privo di pycnon, poiché le due parti della quarta (Hypate-lichanos/lichanos-mese) sono tutte e due uguali a un tono e un quarto. Dopo le indicazioni di Aristosseno in questo primo testo, si danno le seguenti combinazioni:
Pycnon (Hypate-Lichanos) resto della quarta
Enarmonico 2/4 di tono 2 toni
Cromatico grave 2/3 di tono 1 tono + 5/6 di tono
Cromatico emiolico 3/4 di tono 1 tono + 3/4 di tono
Cromatico tonico 1 tono 1 tono e mezzo
Hypate-Lychanos resto della quarta
Diatonico grave 1 tono +1/4 di tono 1 tono e mezzo
Diatonico teso 1 tono + 1/2 tono 1 tono
Per il momento Aristosseno non dice niente dei due intervalli che formano il pycnon, e non calcola il resto della quarta, di cui si deduce l'estensione sottraendo dai due toni e mezzo della quarta le diverse grandezze dei pycnon.
Altra fonte di stupore: non č curioso che Aristosseno parli di un intervallo "emiolico", di cui non cita altrimenti l'estensione? In effetti, questo termine appartiene al vocabolario aritmetico-musicale dei Pitagorici: il rapporto emiolo designa per loro la quinta (3/2). Di fatto Aristosseno utilizza qui questo termine nel suo senso etimologico (il tutto e la metŕ del tutto) cosa che significa qui che bisogna aggiungere al primo semitono "una volta e mezzo" un semitono: cioč in tutto 5/4 di tono; contro tutte le aspettative questo intervallo emiolo appartiene al genere diatonico grave (quinta colorazione) e non al genere cromatico "emiolico", di cui non si conosce nulla di preciso in questo testo.
2. Posizione delle lichanoi secondo le sei sfumature. Č un passaggio molto importante per comprendere la distinzione che Aristosseno fa tra intervalli musicali e intervalli inaccettabili in musica (amelódeta): in effetti, la lichanos cromatica piů grave si allontana dalla lichanos enarmonica di un sesto di tono verso l'acuto (a): la lichanos del diatonico grave č piů alta della piů grave delle lichanoi cromatiche di un semitono e di un dodicesimo di tono (b). In effetti, egli spiega, tra la piů grave lichanos diatonica e la lichanos del cromatico emiolico c'č un semitono (c), dalla lichanos emiolica all'enarmonica, una diesis (enarmonica) (d), dalla lichanos enarmonica alla cromatica piů grave, 1/6 di tono (e), dalla lichanos cromatica piů grave alla cromatica emiolica , un dodicesimo di tono (f). Cosě Aristosseno dimostra che esiste un semitono e un dodicesimo di tono tra la lichanos diatonica grave e la lichanos cromatica grave: la lichanos diatonica piů acuta č piů alta della lichanos diatonica piů grave di una diesis (g):
La lichanos enarmonica serve da riferimento e questi calcoli, che un commentatore di Aristosseno definisce, non a torto, "laboriosi"[15], hanno la funzione di verifica delle posizioni. Malgrado queste numerazioni acrobatiche, manca sempre una lichanos: la lichanos cromatica tonica, da nessuna parte menzionata in questo passaggio.
A cosa mira Aristosseno? Oltre l'interesse rappresentato dalla comparazione tra le posizioni adottate dalla lichanos in ogni nuance, vi č la distinzione tra intervalli musicali e intervalli amelódeta. Aristosseno scrive piů avanti che sono ammessi in musica il quarto di tono, il terzo di tono e il semitono. Tutti gli intervalli inferiori al quarto di tono vengono rifiutati[16], e due fra questi tre intervalli caratterizzano un genere per ciascuno. Il quarto di tono si chiama, nel Trattato di Aristosseno, il terzo di tono si chiama ; quanto al semitono, esso č il primo intervallo del tetracordo nelle due sfumature diatoniche, ma anche nelle cromatiche toniche. Se Aristosseno č spinto a parlare in questo passaggio di sesto di tono (Meib. 25.21), perfino di dodicesimo di tono (Meib. 25.16), č a titolo di grandezza teorica, che non serve se non nel calcolo, per paragonare le distanze che separano una sola e medesima nota nelle diverse colorazioni, e non per lo scarto reale che separa due note distinte di un sistema musicale. Per terminare il suo studio dei generi e delle colorazioni, Aristosseno afferma che in potenza il numero delle lichanoi č infinito: [il numero delle lichanoi va considerato illimitato] (Meib. 26.14). Ed ecco ciň che dŕ un senso nuovo al concetto di luogo delle note mobili: il loro topos č tale che non ha alcuna importanza in che punto di questo luogo una lichanos o una parhypate possono collocarsi. Quando Aristosseno scrive che "non esiste il vuoto" nel luogo della lichanos, egli si spiega immediatamente: questo significa che non esiste punto che non sia capace di ammettere una lichanos (Meib. 26.19). Il teorico ha dunque il compito di determinare rigorosamente i limiti dei luoghi dei suoni mobili, e ha il diritto di fissare, all'interno di questi limiti assoluti, le posizioni che preferisce per ogni sfumatura. Ma non si tratta affatto di leggi universali: l'unica regola generale che bisogna rispettare č che l'intervallo hypate-parhypate debba essere inferiore o uguale all'intervallo parhypate-lichanos.
Lo studio di questo passaggio del primo libro del Trattato di armonica mostra, nello stesso tempo, il rigore del metodo di Aristosseno e i limiti che esso stesso si dŕ. Essere rigoroso significa essere fedele al metodo che ispira l'insieme del trattato nel suo procedere: rimettersi al giudizio dell'orecchio per il quale il tono si divide realmente in due semitoni uguali; ma significa anche scoprire la causa prima di descrivere il fatto: se esistono dei generi, significa che i due suoni intermedi del tetracordo sono, per natura, mobili, mentre i due suoni limitrofi sono, per natura, fissi. Infine, "essere rigoroso" significa saper assegnare un limite alle regole fissate. Cosě Aristosseno non impone autoritariamente le sue sei sfumature: egli le propone e le giustifica - l'essenziale essendo per lui, lo si č visto, determinare con precisione il luogo dei suoni mobili. Tre le innovazioni maggiori: la definizione del genere; la definizione di pycnon; la definizione del concetto di luogo. Č chiaro che nel libro primo del Trattato, le colorazioni sono oggetto di una definizione per procedimento induttivo, fondato sulla descrizione delle differenti forme che prende il tetracordo scelto come paradigma: mese-lichanos-parhypate-hypate. Queste forme sono funzione di due criteri: posizione della lichanos ed esistenza o meno di un pycnon.Che cosa succede ora della teoria delle colorazioni nel libro II?
Vai alla parte seconda
Note
L'articolo che presentiamo in traduzione italiana č apparso per la prima volta in "Revue d'Études Grecques", 95, del 1982. Di alcuni dei testi, citati in greco dall'Autrice, si fornisce la traduzione tra parentesi quadre per agevolare la lettura. Per quanto riguarda l'Armonica di Aristosseno, ci siamo rifatti alla traduzione di Rosetta da Rios, Aristosseno, L'Armonica, ed. R. Da Rios, Roma 1954.
[1] I termini utilizzati in musica come chroa o chroia , chroma e altri come parakechrosmena mele (Aristotele, Politica, VIII, 7, 1342 a 24) si richiamano all'immagine: sono infatti improntati al vocabolario del colore (si veda il Peri Chromaton aristotelico). Il chroma starebbe alla chroa come il genere alla specie, la regola alla variazione. Da qui la traduzione proposta di "colorazione" (si veda J. Chailley, La musique grecque antique, Paris 1979, p. 32; Louis Laloy, Aristoxčne de Tarente, disciple d'Aristote, et la musique de l'Antiquité, Parigi 1904, p. 205).
[2] L'eidos del tetracordo č in funzione della disposizione dei tre intervalli che lo compongono:
Genere enarmonico 1/4-1/4-2
Genere cromatico 1/3-1/3-1 5/6
Genere diatonico 1/2-1/2-1 1/2
L'hypate e la mese sono dei suoni fissi; la parhypate e la lichanos sono mobili. Il genere (genos) appartiene di diritto alla teoria musicale; i Pitagorici (Archita, Filolao) li descrivono, ma non si occupano delle colorazioni, essendo queste a discrezione dei musicisti. Cleonide, nella sua Introduzione armonica, esprime molto chiaramente i rapporti tra il genere e la colorazione (non va dimenticato che egli č il piů fedele dei seguaci di Aristosseno):
Meib. 10, c. 7, in Musici scriptores Graeci, ed. C. von Jan, p. 190).
[3] In compenso, ai neopitagorici starŕ a cuore formulare la loro propria teoria delle colorazioni; lo attesta Tolomeo che ne distinguerŕ otto (si veda Porfirio, ad Ptol. Harm. Comm., p. 157, 1. 21-29 ed. I. Düring): cinque diatoniche, due cromatiche e una enarmonica. Lui stesso utilizza la distinzione genere/specie () per distinguere i tre generi di colorazioni (ibid. riga 21)
[4] Meib. 21.32:
[5] Meib., 22.23. Si noterŕ che Aristosseno imputa ad un fatto naturale, dunque necessario, la mobilitŕ dei due suoni medi del tetracordo e la fissitŕ dei suoni che lo limitano. Questa idea, da parte di un filosofo aristotelico, non č affatto sorprendente. D'altra parte, le due modalitŕ dello spostamento della parhypate e della lichanos sono descritte con i termini greci anéseis (allentamento, abbassamento: si tratta di un movimento che č discendente e porta dall'acuto al grave) ed epitŕseis (tensione, movimento ascensionale dal grave all'acuto), definiti precedentemente da Aristosseno (Meib. 10.24 sgg.), di cui "nessuno ha mai detto nulla" prima di lui (Meib. 3.31). A quanto sembra Aristosseno č il primo musicista ad aver distinto la tensione all'acuto e l'abbassamento al grave. Questo č, in ogni caso, quello che egli dice: acutezza e gravitŕ stanno alla tensione e all'abbassamento, come la causa sta all'effetto. Tensione e rilassamento implicano che la corda o la voce siano in movimento; acuto e grave presuppongono l'arresto di questo movimento.
[6] Non solo prima di Aristosseno nessun teorico della musica si era accorto della mobilitŕ della parhypate e della lichanos, egli č anche il primo a introdurre in musica la nozione di topos (vicino al nostro concetto di luogo geometrico), cioč di spazio descritto da un mobile. I Pitagorici non potevano inventare una tale teoria: essa sarebbe stata estranea ai loro principi, che li portavano a identificare gli intervalli caratteristici dei generi a rapporti numerici immutabili. Per Aristosseno, tutta la teoria della musica consiste nella distinzione di ciň che č mobile da ciň che č fisso:
[Non possiamo trascurare che la comprensione della musica č (comprensione) immediata delle parti stabili e di quelle mobili, e che tale carattere comprende gran parte della musica e, in breve, ogni sua componente] (Meib. 33.28-32).
[7] Meib. 22.30-23.3:
[Il piů piccolo fra tali intervalli non č conosciuto da quelli che hanno familiaritŕ con il genere diatonico: se vi saranno condotti, lo ammetteranno, coloro che non lo hanno ancora compreso. Il piů grande č riconosciuto da alcuni, da altri no: per quale causa accada questo, si spiegherŕ piů tardi].
[8] Si veda la Sectio Canonis di Ps.-Euclide, prop. g, Musici scriptores graeci, von Jan, p. 152 (=Meib. 25): "Di un intervallo espresso da un rapporto epimoro, non si danno né uno né piů medi in proporzione geometrica" (tr. it. di Luisa Zanoncelli, La manualistica musicale greca, Guerini studio 1990). Quello che č dimostrato per il rapporto epimoro (4/3) č vero, per conseguenza, della quarta, che č espressa da questo rapporto – Ps.-Euclide, § 16, von Jan, p. 161: " Il tono non č divisibile in due o piů parti fra di loro uguali...E cosě il tono non puň essere diviso in parti uguali". Si veda anche Plutarco, De anim. procr. in Tim., c. 17, p. 1020 E; Teone di Smirne, Conoscenze matematiche utili alla lettura di Platone, p.112, ed. Dupuis: "il tono non č divisibile in due". Per la scuola pitagorica, lo si vede, non sono divisibili in due parti uguali, né la quarta, né il tono, né l'ottava, né la quinta. Per Aristosseno, la metŕ del tono esiste, essa č un fatto di evidenza sensibile: č il semitono giusto; la quarta č anch'essa divisibile in due intervalli uguali (1 tono 1/4+1 tono 1/4). L'impossibile ed irraggiungibile metŕ del tono corrisponderebbe infatti alla radice quadrata del rapporto 9/8 che esprime l'intervallodi un tono: i Pitagorici non la conoscevano. Cosě ne approssimavano il valore dotando il tono di due parti ineguali, il limma (256/243, dove il valore approssimato della radice quadrata di 9/8 č 17/16 secondo Platone) e l'apotome, di rapporto 2187/2048, che č la differenza tra il tono e il limma. Aristosseno nega qualsiasi valore reale a questi calcoli: egli obbietta ai loro autori che non c'č motivo di rimproverare alla sensazione, che non č capace di percepire questi intervalli la sua imperizia; in effetti questi calcoli non hanno alcuna realtŕ e alcun senso in musica:
[E di queste cose noi cerchermo di dare dimostrazioni cche si accordino con i fenomeni, a differenza dei nostri predecessori, perché alcuni dicono delle assurditŕ, sdegnando di riportarsi alla percezione, per la sua inesattezza,(...) facendo discorsi quanto mai estranei e contrari ai fenomeni] (Meib. 32. 19-29).
[9] Tale č il suo programma, definito a partire dal preambolo del libro (Meib. 7.2).
[10] Meib. 19.12:
[Per ora in questo modo si distingua dalle altre la melodia musicale, pur osservando che la distinzione č stat appena delineata senza entrare nei particolari].
Meib. 4.17-21:
[Definita cosě per sommi capi la melodia musicale, come č possibile fare senza entrare nei particolari, questa melodia, considerata in generale, si deve analizzare e distinguere in quanti generi sembra si divida].
[11] Meib. 24.6-8:
[Nel capitolo della determinazione degli intervalli per mezzo delle consonanze, č detto in quale modo si deve esaminare la quarta, se č commensurabile con uno degli intervalli piů piccoli o se č incommensurabile con tutti].
La dimostrazione č data nel Libro III del Trattato di armonica (Meib. 55-58): si dimostra qui che la quarta si compone di due toni e mezzo, e non di due toni e un limma come pensavano i Pitagorici, grazie a una serie di manipolazioni di intervalli (quarta e tono), disposti da una parte e dall'altra di una quarta. Č evidente che la quarta pitagorica (tono + tono + limma, ovvero 9/8 x 9/8 x 256/243) non ha una misura minima comune. Esponendo la dottrina aristossenica del semitono giusto, Porfirio (ad Ptol. Harm., p. 137, ed. Düring) conclude arbitrariamente che Aristosseno divide il tono in tre, quattro, otto parti; cosě per Aristosseno il numero del tono sarebbe 12, e quello della quarta, 30, come se, Aristosseno, avesse considerato il dodicesimo di tono la misura della quarta: (2 x 12) + 12/2 = 30 dodicesimi di tono. In realtŕ, ciň che cerca Aristosseno non č la minima misura comune, ma la massima: č dunque il semitono che misura la quarta; una quarta, dirŕ nel Libro III, si compone di cinque semitoni (Meib. 57.13): [č chiaro che la quarta č composta di cinque semitoni].
[12] Meib. 24.9-10. Secondo il pitagorico Filolao, al contrario, la quarta copre due toni e una diesis (semitono minore): "La sillaba ha due toni ed una diesis" (Nicomaco, Manuale d'Armonica Meib. 17 = von Jan, p. 253 1. 2). Come si vede, le divergenze di contenuto seguono e implicano le divergenze di terminologia: nel sistema di Aristosseno, il termine epogdoon, con il quale i Pitagorici designano ad un tempo l'intervallo di tono e il rapporto numerico 9/8, non ha alcun senso, e non č mai utilizzato; d'altra parte, il nome stesso della quarta non č piů lo stesso: come la indica Porfirio (ad Ptol. Harm., citando Élien, p. 94-95 ed. Düring), la č l'accostamento di due note che produce, per prima, una consonanza; testimonianza che riporta ugualmente Nicomaco (Meib. 16); il riferimento alla pratica della lira č evidente, e Aristosseno respinge violentemente il procedimento che consiste nel prendere per criterio qualunque cosa che si rifaccia agli strumenti (Meib. 41-43). Quanto alla diesis, benché il termine appartenga alla terminologia pitagorica e aristossenica, esso non ha il medesimo senso: in Aristosseno, potrŕ essere enarmonico (1/4 di tono), o cromatico (1/3 di tono), e sarŕ sempre un intervallo reale del tetracordo, sottomultiplo del tono.
[13] Č cosě che egli accusa i teorici che praticano solo attraverso delle serie di calcoli di "lottare contro l'evidenza": (Meib. 49.32) l'espressione č ripresa da Porfirio (ad Ptol. Harm., cit., p. 139) contro i calcoli di Archita di Taranto, che fu tra i Pitagorici colui che si interessň di piů alla musica: [infatti va contro ai fenomeni nella divisione dei tetracordi]
[14] Meib. 24.11-15:
[15] Louis Laloy, cit., p. 215.
[16] Meib. 46.2.
Annie Bélis - Le "nuances" nel Trattato di armonica di Aristosseno di Taranto
II parte
II
Seconda esposizione (Meib. 46.20-52.32)
Questa seconda esposizione, molto sviluppata, comprende una lunga argomentazione che ha il compito di rispondere allo stupore degli uditori i quali non capiscono come la lichanos possa conservare il proprio nome malgrado la diversitŕ delle sue posizioni, ovvero, nonostante le differenze di estensione degli intervalli mese-lichanos, lichanos-hypate[17]; questa messa a fuoco, senza rompere l'unitŕ dell'argomentazione, ne ritarda lo svolgimento previsto da Aristosseno. L'insieme della dimostrazione, č diviso in quattro parti.
1. Meib. 46.20-47.9: ritorno al metodo che presiede alla definizione delle differenze di genere determinate nel libro precedente: esso si basa sul tetracordo che va dalla mese alla hypate, in cui gli "estremi" sono fissi e gli "intermedi" sono mobili, talvolta l'uno e l'altro, talvolta l'uno o l'altro: "Le differenze fra i generi sono esaminate all'interno di un tetracordo quale quello che va dalla mese all'hypate, in cui, mentre le due note estreme sono fisse, le due medie si muovono o entrambe o solo una delle due" (Meib. 46.20-25). Questa frase preliminare richiama due osservazioni e riassume con estrema concisione i fatti che sono emersi nel libro precedente: la mobilitŕ dei suoni interni del tetracordo, la fissitŕ dei suoni limitrofi. D'altra parte, Aristosseno introduce qui due termini in uso presso i matematici del suo tempo: ta akra ed oi mesoi, per designare due realtŕ dello spazio musicale[18]. Alla definizione pitagorica dell'intervallo attraverso il sopravanzare di un numero su di un altro (3/2 per la quinta, 4/3 per la quarta, 2/1 per l'ottava, 9/8 per il tono, 256/243 per il limma, ecc.), Aristosseno sostituisce, come dice cosě bene Porfirio, una definizione "topica" dell'intervallo, riprendendo con un senso nuovo gli stessi termini dei suoi avversari (cosě egli parla degli "oroi" del tetracordo)[19]. La sua prima preoccupazione č di rideterminare il topos dei due suoni mobili, dapprima quello della lichanos, che serve sempre da riferimento, poi quello della parhypate. Dopo le indicazioni date nel libro precedente, Aristosseno puň procedere velocemente: il luogo della lichanos č di un tono, dal diatonico fino al genere enarmonico; il luogo della parhypate č definito dallo scarto minimo e dallo scarto massimo tra la parhypate e l'hypate: esso si estende fino a raddoppiarsi e allora la lichanos piů grave confina con la parhypate piů acuta:
2. Meib. 47.9-50.14: Excursus sul nome delle note mobili. Ecco il passaggio piů lungo del testo che stiamo studiando: si ritiene di rispondere agli interrogativi degli uditori che si domandano come sia possibile che, mentre l'intervallo mese-lichanos diminuisce o aumenta, si possa parlare sempre di lichanos. Essi vorrebbero che si riservasse il nome di lichanos alla sola lichanos a due toni, e che si considerassero come diverse le note che delimitano degli intervalli differenti (Meib. 47.20). Obiezione forte, che non imbarazza affatto Aristosseno; al contrario, egli coglie l'occasione offertagli per giustificare ampiamente i principi delle sue teorie e di ricusare quelle dei suoi avversari. In effetti, ecco che egli spiega il proprio concetto di dynamis degli intervalli; egli prende il caso in cui gli intervalli sono tutti di quinta e sono dunque tutti uguali in grandezza, tuttavia essi hanno una funzione differente: mese-nete, paranete-lichanos, trite-parhypate. Prova, cosě, a coloro che lo contraddicono, l'assurditŕ dei loro presupposti. Non contento di questa prima risposta, egli continua la sua argomentazione mostrando che si sarebbe costretti a ricercare un' infinitŕ di nomi se si volessero avere tanti nomi quante note: egli ripete qui che, in effetti, il luogo della lichanos č, in linea di principio, divisibile all'infinito[20]. Il terzo argomento non č da meno: č l'orecchio che identifica i generi in funzione della struttura del tetracordo, senza tener conto della disuguaglianza o dell'uguaglianza degli intervalli, bensě riferendosi alla somiglianza della forma: sono ritenuti "simili", per esempio, i tetracordi con il pycnon, tetracordi che appartengono sia al genere enarmonico, sia al genere cromatico. La formulazione di Aristosseno č fatta per scandalizzare i Pitagorici: la sensazione "dice" - léghei - che si tratta di un genere piuttosto che di un altro, in funzione della "forma" - eidos - del tetracordo; quello che si puň dire sulla uguaglianza o sulla diseguaglianza degli intervalli per essa č nulla.
[E' evidente che nessuno di questi procedimenti corrisponde al modo di rappresentazione della percezione sensibile, perché essa dice i generi enarmonico e cromatico, considerando la somiglianza di una certa forma, non la grandezza di un certo intervallo] [21].
Da dove, dunque, la sensazione trae la capacitŕ di percepire il carattere proprio di ciascun genere e le diverse colorazioni che esso puň prendere? Se le grandezze cambiano, ciň non č dovuto né all'ethos del genere, né al genere stesso, né alla dynamis delle note, perché la forma del tetracordo resta la stessa: [Ma la forma del tetracordo č la stessa...] (Meib. 49.20). Alla fine di questo passaggio, che sconvolge le teorie del suo tempo, Aristosseno invita i suoi avversari a non lottare piů contro l'evidenza ( [combattere contro i fenomeni]) ( Meib. 49.32), e ad ammettere come lichanos il suono intermedio piů acuto e come parhypate il suono intermedio piů grave, le cui denominazioni sono, per l'appunto, relative (Meib. 50.10).
Con questa lunga discussione, Aristosseno enuncia alcune delle sue idee piů innovatrici: č vano considerare le realtŕ musicali in termini di grandezze misurabili e di regolarsi unicamente sulla estensione degli intervalli; bisogna invece rimettersi al giudizio dell'orecchio e teorizzare solo ciň che si percepisce; da qui il nuovo concetto di tetracordo, da qui il concetto di somiglianza e di non somiglianza () che detronizza quello di eguale e diseguale ().
3. Meib. 50.15-52.33: Particolaritŕ delle sfumature. Solo dopo aver situato la sua riflessione e aver risposto ai suoi obbiettori, Aristosseno č infine pronto a offrire il calcolo preciso delle sei colorazioni, per poi fare il bilancio delle sei lichanoi e delle quattro parhypates.
Notiamo che il termine generico con il quale Aristosseno designa le sue colorazioni č: differenze (diaireseis) del tetracordo mostrando bene cosě che non si tratta tanto di parlare dell'estensione degli intervalli quanto della disposizione relativa dei gradi gli uni rispetto agli altri: posizione della lichanos in rapporto alla mese, posizione della parhypate in rapporto all'hypate, scarto tra i due gradi mobili.
Egli esamina successivamente i tre generi (dall'enarmonico al diatonico) dando di volta in volta l'estensione del pycnon allorquando ce n'č uno e quella del "resto della quarta" :
Nome della diairesis
Estensione dei primi due intervalli
Resto della quarta.
I Enarmonico
Semitono (pycnon)
Ditono
II Tre divisioni cromatiche:
Cromatico molle
Cromatico emiolico
Cromatico tonico
Le due minime diesis cromatiche (pycnon)
Una volta e mezza il pycnon enarmonico (pycnon)
Pycnon di due semitoni (B)
Il resto č espresso in due unitŕ di misura ossia un semitono preso tre volte ed una diesis cromatica presa una volta sola (A)
Il resto č un tono e mezzo
III.Due divisioni diatoniche:
Diatonico molle
Diatonico teso
H - Ph = Un semitono (C)
Ph - L = Tre dieseis enarmoniche
H - Ph = Un semitono
Ph - L = Un tono
L - M = Cinque dieseis
L - M = Un tono (D)
H = Hypate; Ph = parhypate ; L = lychanos; M = mese
Questa tabella impone quattro osservazioni:
A. Perché misurare in due volte il resto della quarta nel cromatico molle, successivamente per "tre volte un semi-tono e una volta una diesis"? La sua estensione č dunque di tre semitoni + un terzo di tono, o ancora un tono e mezzo e un terzo di tono, o, in totale, un tono e cinque sesti di tono. Si tratta di un intervallo non-composto, pertanto, per definizione, non č divisibile in due intervalli piů piccoli, poiché non c'č suono tra la lichanos e la mese. Tutto l'imbarazzo di Aristosseno si trova in questo punto: in effetti, un intervallo di 11/6 di tono č difficile da sistemare tra gli intervalli che l'orecchio puň distinguere, per esempio, da un ditono, se non attraverso la sensazione che esso dŕ di essere vicinissimo a questo ditono. In ogni caso si tratta di un intervallo che Aristosseno non riconosce come melodikos () stricto sensu: bisogna che un intervallo sia commensurabile al tono per essere adatto a entrare nella melodia (č quello che ci dicono gli Elementi ritmici di Aristosseno, che colmano fortunatamente il passo perduto del Trattato d'armonia). Dunque gli 11/6 di tono in questione nel cromatico molle infastidiscono tanto Aristosseno che egli preferisce scomporli in due misure, dal momento che esse sono razionali: il semitono e la diesis cromatica. Il calcolo elude la difficoltŕ senza risolverla.
B. Il cromatico tonico, quarta colorazione, segna una svolta nelle forme del tetracordo: in effetti, esso si scompone in due semitoni, per l'intervallo composto hypate-lichanos, e in un tono e mezzo per l'intervallo semplice restante; esso comporta dunque un pycnon, che sarŕ l'ultimo della serie; d'altra parte, a partire da questa colorazione, la parypate non si sposterŕ piů: essa resterŕ a un semitono dall'hypate. Ci saranno dunque in tutto sei lichanoi e quattro parypates solamente. Di conseguenza, sottolinea Aristosseno, l'apparire del genere diatonico coincide con la scomparsa delle forme a pycnon. Cosě dicendo, egli conferma la possibilitŕ per la sensazione di identificare il genere in cui si trova una colorazione, qualunque essa sia.
C. A causa della scomparsa del pycnon, Aristosseno scompone il suo tetracordo in un modo nuovo, intervallo per intervallo: egli utilizza le misure che gli sono comode, per esempio la diesis enarmonica per misurare l'intervallo parhypate-lichanos del diatonico molle. Č senza dubbio un'azione fatta contro voglia in mancanza di una diesis diatonica, che č inconcepibile: il piů piccolo intervallo semplice di questo genere č il semitono, irriducibile ai 3 terzi di cui egli ha qui bisogno.
D. Invece di spezzare gli intervalli parhypate-lichanos e lichanos-mese, Aristosseno si accontenta di dire che gli "intervalli che rimangono" sono di un tono.
Tavola riepilogativa delle sei di Aristosseno
le misure vengono effettuate in dodicesimi di tono
2 toni e mezzo = 30 dodicesimi di tono
Misure in frazioni di tono
Enarmonico 1/4 1/4
2
Cromatico molle 1/3 1/3 1 e 5/6
Cromatico emiolico 3/8 3/8 1 e 3/4
Cromatico tonico 1/2 1/2 1 e 1/2
Diatonico molle 1/2 3/4 1 e 1/4
Diatonico teso 1/2 1 1
4. In conclusione, Aristosseno fa un breve bilancio: ci sono sei lichanoi, in quanto "differenze del tetracordo", e solamente quattro parhypate, essendo due comuni al cromatico e al diatonico. Insomma, ci sono due leggi che reggono gli intervalli di cui si compone il tetracordo nelle sei colorazioni: l'intervallo hypate-parhypate č uguale o inferiore all'intervallo parhypate-lichanos, mai piů grande. In compenso, gli intervalli parhypate-lichanos e lichanos-mese possono essere uguali o diseguali (piů grandi o piů piccoli). Solo la prima regola č efficace perché essa esclude un tipo di figura; tuttavia per Aristosseno essa č sufficiente per distinguere le combinazioni di intervalli (armoniose) dalle combinazioni di intervalli (non armoniose). Egli offre un esempio: se si combina una parhypate del cromatico molle con una lichanos del cromatico tonico (a), si fa una buona combinazione; l'inverso (b) č invece inaccettabile: insomma, la legge del restringimento degli intervalli dall'acuto al grave sarebbe, in questo caso, violata.
Divisione
(H-Ph Divisione
(H-Ph>Ph-L)
Č alla fine di questi due lunghi testi, situati l'uno nel Libro I del suo Trattato e l'altro nel Libro II, che Aristosseno fissa le sue sei colorazioni: una per il genere enarmonico, tre per il genere cromatico, due per il diatonico. Questo lavoro si compie attraverso una argomentazione che esce dai limiti angusti di un semplice calcolo degli intervalli che compongono il tetracordo, calcolo al quale si attengono, invece, i commentatori allorquando studiano questi testi. Sarebbe pertanto un abuso isolare questa determinazione numerica dal contesto in cui essa č situata: in effetti, lo abbiamo visto, essa giunge a conclusione delle argomentazioni precedenti, le quali riguardano la distinzione tra suoni fissi e suoni mobili del tetracordo, distinzione che č data da Aristosseno come la causa dei generi, e anche la definizione di "pycnon", fatta per la prima volta in musica; infine esse toccano problemi di denominazione delle note, indipendentemente dall'estensione degli intervalli. Con la sua teoria delle colorazioni Aristosseno dimostra la fondatezza della propria teoria delle forme musicali e delle funzioni armoniche dei suoni, teoria che egli č il primo a enunciare.
Lontano dall'essere una questione vana e senza senso, la dottrina delle colorazioni ha dunque un ruolo nel Trattato di armonica: non tanto un ruolo musicale (dal momento che il particolare delle sei "nuances" suggerito dai musicisti non č, e non puň essere altrimenti, che indicativo), ma piuttosto una funzione di esemplaritŕ. Come infatti determinare se questa o quella combinazione sia adatta a entrare nella pratica? La legge della discriminazione elaborata da Aristosseno offre una risposta: č necessario che l'intervallo hypate-parhypate sia inferiore o uguale all'intervallo parhypate-lichanos. Ruolo polemico, d'altra parte, in quanto in occasione della sua esposizione Aristosseno denuncia i principi sui quali si basano le teorie pitagoriche: misure quantitative degli intervalli e ignoranza dei suoni mobili.
Infine, bisogna sottolineare che Aristosseno non č riuscito interamente nella sua impresa di rinnovamento dei metodi musicali. In effetti, egli cade nella sua propria trappola riducendosi ad ammettere come intervallo semplice un intervallo di 11/6 di tono. Certo, egli aggira la difficoltŕ rimettendola a due misure razionali, ma il male č fatto. Il solo risultato perfetto č che egli dimostra in sei riprese (tante sono le volte in cui egli esamina una colorazione) che il tetracordo, cioč la quarta, si compone di due toni e mezzo, mentre i Pitagorici ne facevano la somma di due toni e un limma (9/8+9/8+256/243), dunque leggermente piů piccola di due toni e mezzo. Egli dimostra nello stesso tempo che la quarta č commensurabile al semitono, cosa che i Pitagorici non ammettevano.
Cosě, il testo che noi abbiamo appena esaminato rappresenta una parte importante della dottrina di Aristosseno il quale non ricade negli eccessi degli Armonisti, qualunque cosa sia stata detta in proposito [22]. Al contrario, essi illustrano il metodo di Aristosseno: il criterio del musicista č la sensazione, criterio efficace e giusto, che č all'origine della teoria musicale.
Per concludere, per quanto la messa in scena delle sei colorazioni possa apparirci cosě laboriosa, essa č l'indispensabile preparazione all'ultima tappa del Trattato di armonia (Libro III), che enuncia le leggi di combinazione degli intervalli e le concatenazioni dei sistemi: tra i ventisei problemata dimostrativi che ci restano, piů di venti prendono le mosse dalle regole definite nei due passaggi che qui abbiamo studiato. In effetti, si tratta allora di determinare, per esempio, quali intervalli possono succedere a un pycnon, oppure se si possono incontrare due ditoni successivi, ecc. In realtŕ, qui le dimostrazioni procedono per esclusione di combinazioni a partire dai principi indotti nel I e nel II libro: la teoria delle colorazioni testimonia la coerenza del testo e della dottrina di Aristosseno.
Annie Bélis
Torna alla parte I
Note
[17] Gli scarti tra la lichanos e la mese vanno dal semplice al doppio: da un tono a due toni; ugualmente, gli scarti tra la parhypate e l'hypate vanno dal semplice al doppio: da un quarto di tono a un semitono. Tra i suoni mobili (lichanos e parhypate), l'incremento (auxesis) va dal semplice al quadruplo: dal quarto di tono al tono.
Scarti tra Lichanos e Paryphate
(in dodicesimi di tono)
Per gli scarti tra suoni fissi e suoni mobili, vedere la Tabella riassuntiva delle sei Chroai di Aristosseno.
[18] Gli akra sono i suoni fissi che delimitano il tetracordo: i mčsoi ne sono i gradi intermedi. Aristosseno designa dunque queste note in funzione della posizione che occupano in mezzo al luogo, relativamente le une rispetto alle altre. Anche i Pitagorici utilizzavano questi termini per descrivere i numeri che compongono la media armonica: sia la serie dei tre numeri 3, 4, 6; essi formano una serie armonica di cui i numeri 3 e 6 sono gli akra e il numero 4 il mesos. L'ottava č costituita dal rapporto dei termini estremi 6/3 (ovvero il rapporto doppio 2/1); la quarta č costituita dal rapporto 4/3, e la quinta dai numeri 6/4 (ovvero il rapporto emiolo 3/2); di qui il nome di "armonica" attribuito a questa serie, perché attraverso i numeri dei quali č composta, si possono costruire i rapporti che esprimono le tre consonanze. Si veda Iamblicus, in Nicom. arithm., p. 108, 20 ed. Pistelli; Teone di Smirne, Conoscenze matematiche, p. 196, ed. J. Dupuis.
[19] Gli oroi di un intervallo, per i Pitagorici, sono i due numeri che ne formano il rapporto matematico. Stessi riferimenti della nota 18.
[20] Meib. 48.14-15:
[Il luogo della lychanos si distingue in un numero infinito di divisioni].
[21] Meib. 48.21-26.
[22] Č Louis Laloy che rivolge questo rimprovero ad Aristosseno: egli parla della sua "mania di misurare" (Aristosseno di Taranto, p. 219), e considera che "tutta questa parte dell'opera di Aristosseno, ispirata troppo direttamente dalle dottrine correnti, č (...) inutile e inesatta" (op. cit., p. 217).
--------------------------------------------------------------------------------
Traduzione di Matilde Battistini