Miután a Skalár-e az egydimenziós vektor?-ral már úgyis jól lejárattam magam, így bátorkodom előhozni egy másik gyermekkori nümükémet.
Például itt az a csoda, amit a nemrég fellelt Archimédeszi Palimpszesztben is megtaláltak, miszerint a(z azonos magasságú és átmérőjű) henger=gömb+kúp
Mindigis zavart, hogy milyen szépek lennének a képletek, ha az a fránya Pi pontosan három lenne, és
nem 3,14...
Elhülyéskedtem a kérdéssel, de a legtöbb, amit a fagyos közönyön kívül ki tudtam váltani vele, az a fagyos elutasítás volt.
Talán mert belekevertem a Jóistent is.
Oly módon, hogy a Jóisten nem a térdén hajlította meg a teret (Pi<3 lett volna), nem is az ujjával csettintve (Pi=3 maradt volna) hanem ajkaival pontosan kiszámítva cuppantott (Pi=3,14... lett), mikor teret teremtette.
(Az Élet Értelme: http://zorroaszter.nolblog.hu/archives/2012/06/03/Az_Elet_Ertelme/)
De talán itt az indexen vannak érzőbb szívű olvtársak is.
Tehát a végső kérdés (The Ultimate Question):
Létezhet-e olyan speciálisan horpadt nemeuklideszi tér, ahol a pi pont három?
És ha létezik, ez lenne minden geometria ősanyja?