Az i indexet értettem, azért is hagytam el, de részenként értettem a kérdést.
A g-t mint felső indexet is értettem.
j = ρv a részecskeáram-sűrűség. (i indexelés nélkül most) Na de ugye ezt a részecske ilyen-olyan töltésével kell megszorozni, hogy a részecskék által létrehozott töltésáram-sűrűség legyen. Elektromágneses esetben mondjuk q-val, na de gravitációs esetben miért csak g-vel, és miért nem gm-vel?
#A második egyenletben sehol sem szerepel a tömeg. Szóval ez így nem lehet jó gravitációs esetre. Persze lehet, hogy csak lemaradt az mi ... (ahogy CGS estén a 4π/c ... (a + - előjelet hirtelen most nem látom át..))
Az az előadás katasztrofálisan nagy marhaság. Én a helyében még a youtube-ról is letöröltetném, és elmondanék 10123 miatyúkot meg üdvözlegyet, hogy mindenki elfelejtse. xDD
Mi a j(n)ν ? És pontosabban fel tudnád ezt írni?? Tehát úgy, hogy: j(n)ν = ...
(Meg lehet, hogy hiányzik egy 4π/c ...)
Valamint q-t miért csupán g váltja fel, és miért nem gm? Hiszen utóbbi nálad a gravitációs töltés nem pedig g. A j(n)ν pedig ugyanazt kell, hogy jelentse mindkét kiinduló egyenletben, úgyhogy ebből is látszik, hogy nem stimmel valami.
Nehogy azt gondold, hogy mások hibáját minden esetben könnyű felfedezni. Magasabb szinten egyre nehezebb, és gyakran úgy el van fedve ferdítő magyarázatokkal, hogy még nehezebb. (Csakhogy néhány nevet említsek: Dávid Gyula, Marx György, Hraskó Péter, és egy lelkes amatőrünk: construct :DD, valamint hogy könyvet is említsek: Novobátzky könyv, Landau II könyv, ami egyébként kiemelkedően jó könyv (Novobátzkyéval együtt), de bizony ebben is van hiba, és nem jelentéktelen elírásra vagy nyomdahibára gondolok, hanem jelentős elméleti hibára... az oldalamon részletesen ki van elemezve és javítva több ilyen hiba/probléma...)
"neked/nektek kell magasabb szinten lenni ahhoz, hogy lásd/értsd a másik hibáit"
Ezek szerint kiinduló axiómája szabikunak, hogy szabiku áll magasabb szinten mindazoktól, akiknek defektjeiről itt értekezik: Einstein-től, de Broglie-tól, Hraskó Pétertől, Jánossy Lajostól, Marx Györgytől, Dávid Gyulától.
Egy amatőr szájából mindenesetre elég nevetséges beképzeltség.
Itt van hát a példa rá, milyen "sérültté teszi/teheti az embert, ha azt nem tudja megfelelően kontrollálni, belátni, meglátni, szabályozni, ... , és így fejleszteni magát"
Egyrészt ismerem a probléma elkerülésének módját, és már a kezdetektől fogva gyakorlom:
"Az agy felfogóképességén túli erős vágy pl. sérülté teszi/teheti az embert, ha azt nem tudja megfelelően kontrollálni, belátni, meglátni, szabályozni, ... , és így fejleszteni magát."
Másrészt neked/nektek kell magasabb szinten lenni ahhoz, hogy lásd/értsd a másik hibáit. Ha nem állsz/álltok magasabb szinten, jó képességekkel intuitív módon érezhető, hogy mi lehet helyes, és mi inkább nem. A sikeres továbblépéshez ez nagyon fontos dolog, és ha már sikerült előrébb feljebb jutni, akkor a továbbiakhoz is fontos, hogy visszaellenőrizzük, kiértékeljük a korábbi intuíciós megérzésünket, ezzel is fejlesztve, jobban megismerve agyunk képességeit.
Ezek egészen általános dolgok, nem csak a természettudományi (matematika, fizika, ... stb.) ismereteink jó fejlődéséhez szükségesek.
"Talán nem az elektromágneses mező kvantált eredendően, hanem az atomok diszkrét energiaszintjei miatt keletkeznek diszkrét energiacsomagok. Részletesen meg kellene vizsgálni ezt a dolgot..."
Igen, de senki sem meri megvizsgálni, mert akkor a fotonnak lőttek.
Ha kikötöd, hogy a hullámfüggvény lecsengjen a végtelenben, akkor drasztikusan szűkíted a megoldáshalmazt.
A hullámfüggvény a valószínűségi amplitudó, amit négyzetesen kell integrálni.
Végtelen energiákkal nem tudok mit kezdeni...
Valójában nem is a végtelenben kell lecsengenie, hanem igen rövid távolságon belül.
De ez kísérletileg könnyen eldönthető. Meg kell nézni, hogy a két rés távolságától hogyan függ az interferencia.
Kegyes vagyok és nem várom el, hogy egyrészecske interferencia legyen, lehet nyaláb is. De a két rés távolsága legyen 5 méter. Szerinted lesz interferencia?
"a Schrödinger egyenletnek csak kvantált megoldásai vannak a kötött elektronállapotok esetén. Hol a hiba?"
A peremfeltételekben. Ha kikötöd, hogy a hullámfüggvény lecsengjen a végtelenben, akkor drasztikusan szűkíted a megoldáshalmazt.
"a Maxwell-egyenletek csak akkor invariánsak, ha a térben nincsenek kósza töltések, vagy ha a töltéseket is ugyanúgy mozgatjuk. - Ezt éppen tegnap olvastam."
Mert éveken keresztül ezt tanították, hogy a Schrödinger egyenletnek csak kvantált megoldásai vannak a kötött elektronállapotok esetén. Hol a hiba?
Talán egyszer sajátkezüleg meg kellene oldanom a Schrödinger egyenletet...
De akkor már jobban érdekelne a gravitációs négyespotenciál esete.
Egyébként a Maxwell-egyenletek csak akkor invariánsak, ha a térben nincsenek kósza töltések, vagy ha a töltéseket is ugyanúgy mozgatjuk. - Ezt éppen tegnap olvastam.
Vegyük úgy, hogy a térben nincsenek töltések és nincsenek tömegek sem.
Tehát...
Egy ilyen megoldáshoz ki kell venni az egyenletedből az áramsűrűségeket és az elektromágneses Faraday-tenzort, viszont el kell helyezni egy gravitációs magpotenciált. (Átnézem a jegyzeteimet, aztán megpróbálkozok vele.)
"Még Einsteinnek is volt ilyenje, hiszen köztudott, hogy pl. a kvantumelmélettel hadilábon állt." Ö ezt nem tudta helyesen megindokolni, de annak ellenére igaza volt. A KVANTUMELMÉLET A KVANTÁLT ELEMI TÖLTÉSEK LÉTEZÉSÉBÖL ÁLL ÉS NEM A KVANTÁLT ENERGIÁBÓL. Ezt például Einstein nem tudta!
Az új fizika szerint fotonok nem léteznek. (Minden új fizikusnak ez a véleménye.)
A fogalmainkat általában absztrakció útján képezzük. Ehhez pedig tapasztalatokat összegzünk.
Talán nem az elektromágneses mező kvantált eredendően, hanem az atomok diszkrét energiaszintjei miatt keletkeznek diszkrét energiacsomagok. Részletesen meg kellene vizsgálni ezt a dolgot...
Viszont a tudásvágy, mint bármilyen vágy, igen-igen erős tud lenni.
Hát sajnos ez bizonyos emberek esetében nem túl erős vágy. Pláne ha még erőfeszítéseket is kell tenni. Könnyebb a tévé előtt dögleni és autóversenyt nézni, ahogy órákon keresztül mennek körbe-körbe.
(Nekem eddig jónéhány olyan főnököm volt, akik úgy gondolták, hogy már tanultak eleget. Nekik már nem kell többet tanulni, csak osztják az észt - olyan dolgokról is, amiről fogalmuk sincs, és még az alapfogalmakat sem ismerik. Lásd még az evolúció topikba írt néhány megjegyzésemet.)
Ezek a defektek bizonyos okokból annyira rögzülni tudnak, hogy sajnos gyakran az egyén élete végéig megmaradnak, gátolnak.
Egy fizikus évekkel ezelőtt azt mondta, hogy az ember nagyon könnyen meg tudja győzni önmagát arról, hogy az elképzelése helyes. (Akkor egy időre félretettem az egészet. Később újból elkezdtem fizikát és matematikát tanulni.)
... stb.)
Hát, senki sem tökéletes.
Az evolúció ezek szerint még nem jutott el arra a fokára, hogy a tudatosság lehetőségével célszerűen tudjunk bánni.
Van egy hozadéka az új fizikának, amely kellemetlen lehet a kvantummechanika számára.
Az új fizika szerint fotonok nem léteznek. (Minden új fizikusnak ez a véleménye.)
A kvantummechanikában azonban a fotonoknak fontos szerepe van. A 4 kölcsönhatás egyikének, az elektromágneses kölcsönhatásnak a közvetítő részecskéje a foton. (Bár a régi fizikusok szerint a foton nem is részecske.)
Ha viszont foton nem létezik, akkor nem lehet közvetítő részecske. Vagyis borul az egész elmélet, amely szerint a kölcsönhatásokat részecskék közvetítik. Az új fizika szerint az egész kavantummechanikát újra kell gondolni.
Mivel igen nehezek ezek az elméletek, nem mindenki tudja magáévá tenni. Egyszerűen fogalmazva sok embernek nem fogja fel az agya. Egyáltalán nem fogja fel, rosszul fogja fel, ... hasonlók. Viszont a tudásvágy, mint bármilyen vágy, igen-igen erős tud lenni. Ez nem csak az alapvető személyiségét határozza meg az embernek, hanem pl. a tudományos nézetét is, ha éppen egy fizikával foglalkozó személyről van szó. Az agy felfogóképességén túli erős vágy pl. sérülté teszi/teheti az embert, ha azt nem tudja megfelelően kontrollálni, belátni, meglátni, szabályozni, ... , és így fejleszteni magát. (Az agy jutalmazó rendszere erősebb az értelemnél és a logikánál, így az gyakran felül tud kerekedni az embereknél. Viszont a hibás felfogásnak ez csak egy jellegzetes esete, amit nevezhetünk inkább sérült felfogásnak. Ez pszichikailag egy igen rossz eset. Jobb esetben lehet pusztán mondjuk enyhébb tévedés alapú egy rossz/hibás felfogás...) Ez teljesen egyedi jellegű, hiszen egyénfüggő. Ahogyan Gyula I. Szásznak, úgy pl. Dávid Gyulának, vagy Hraskó Péternek (aki azért igen sokat javult az elmúlt tíz évben...) is meg van az ebből fakadó természettudománynézeti defektje, csak más jellegű és nagyságú. (Jánossy Lajos, Marx György, ... stb.) Még Einsteinnek is volt ilyenje, hiszen köztudott, hogy pl. a kvantumelmélettel hadilábon állt. (de Broglie, ... stb.) Ezek a defektek bizonyos okokból annyira rögzülni tudnak, hogy sajnos gyakran az egyén élete végéig megmaradnak, gátolnak. (hogy egy lelkes amatőrt is említsek: construct, alias: api, con :DD)