Keresés

Részletes keresés

Cleaning Cloths Creative Commons License 2022.12.04 -2 0 12

Már eleve az a legnagyobb félreértés, hogy ez egy MATEMATIKAI TÉTEL lenne. Nem az.

Az is félreértés, hogy ez tudományos dolog lenne.... nem az ... áltudományos posztmodern filozófia csak. 

Előzmény: vinlander (10)
Cleaning Cloths Creative Commons License 2022.12.04 -2 0 11

Bárki észrevehette volna előttem is, hogy az adott tétel csak egy trükkös átverés, becsapás, ami főként a hamis dilemmát használja. A hamis dilemma egy olyan érvelési hiba, amely úgy állítja be a vitát, mintha csak két alternatíva létezne, mikor valójában több, nem mérlegelt választási lehetőség is van. Ha az érvelésben ilyen hiba van, akkor a logikában és a tudományban érvénytelennek mondják és annak is számít. Kurt Gödel trükkje, vagy hibája: Tehát eleve három alternatívából, vagy döntési helyzetből indít, mert tudja azért, hogy a matematikai logikában vannak köztes állapotok is, így 1. paradoxon ( vagy eldönthetetlen, megoldhatatlan, önellentmondásos, egyik sem, is ) , 2. igaz (vagy nem cáfolható) és 3. hamis (vagy nem igazolható)... aztán kiveszi a paradoxont, tehát a hármat leszűkíti csak két alternatívára és megállapítja, hogy még is maradtak bent paradoxonok. Persze nyugodtan lehetne négy, öt, vagy hatféle dolog is - mert például paradoxonokból is két alap fő fajta van - ... ami mind igazolható, bizonyítható, hogy az és pont az. A matekban nem akadály bármit elnevezni valaminek. Lásd az "i"-t erre jó példának.

vinlander Creative Commons License 2022.12.03 0 1 10

a témában ld.

Franzén, T. -- Gödel nemteljességi tételei, értelmezések és félreértések

Előzmény: Cleaning Cloths (8)
ErkölcsTan Creative Commons License 2022.12.03 -2 0 9

" Ha vallás alatt olyan gondolatrendszert értünk, amely bizonyíthatatlan állításokat tartalmaz, akkor Gödel megmutatta nekünk, hogy a matematika nem csak hogy vallás, hanem ez az egyetlen vallás, ami be is tudja bizonyítani magáról, hogy az. " - John D. Barrow (1952 -2020) angol kozmológus, elméleti fizikus és matematikus. A képen jobbra. Téved, nem történt bizonyítás. Gödel egy illúziót keltett csak.


Persze egy ideje tudtommal illik megadni már a matematikában is, hogy milyen érvényességi rendszerben történik a bizonyítás, vagy a cáfolás. Mert ami az egyikben jó lehet, az a másikban meg nem. Ezen felül még fura módon nem csak a filozófia, de a matematika is bevezette a metalogika fogalmat. Brööüüüűűű.???!!! Nóóóóómáááális??? !!!  -   Nos jómagam nem vesződnék ezzel, sem az elsőrendű, sem a magasabb rendű, sem a köztes, sem a deviáns logikával, mert a tudományosság, a logika és a helyes gondolkozás legáltalánosabb szabályait veszem alapul. Tehát valódi tudományosságát, vagy áltudományosságát vizsgálom.

Cleaning Cloths Creative Commons License 2022.12.03 -2 0 8

A filozófusok nagy lelkesedéssel vetették rá magukat Gödel felfedezésére, pedig többnyire egy szót sem értettek belőle. Talán egyetlen tudományos gondolatból sem származott még ennyi sületlenség.[2]

 

Ördögi körök

Az abszurd vicctől a Gödel-tételig

Ron Aharoni

Fordította: Kepes János

 

Cleaning Cloths Creative Commons License 2022.12.03 -2 0 7

Felvetésem a matematikai formalizálás hibalehetőségeit és korlátjait érintiKurt Gödel (1906-1978) matematikus első nemteljességi tétele érvényes-e, vagy csak főként egy hamis dilemmára alapuló érvelési hiba? Tényleg csak két választási lehetőség van? Vagy van még több is? Nem kellene inkább ezt átsorolni a paradoxon példákhoz? Mint David Hilbert (1862-1943) egyik leghíresebb matematikus Grand hotel felvetése is oda van sorolva. Egyáltalán matematika ez, vagy csak igen butuska és ráadásul hibás filozofálgatás? Gödel különféle tételei egymást is cáfolják? 

Előzmény: Cleaning Cloths (6)
Cleaning Cloths Creative Commons License 2022.12.02 -2 0 6

1. Matematikai teljességi tétele -> Ennek két tétele ellentmond. Most akkor mi is az igaz. Matek teljes, vagy nem teljes? 

 

2. Matematika első nemteljességi tétele  -> Paradoxon 

 

3. Matematikai második nemteljességi tétele  - > Bizonyítja, hogy az 1 tényleg paradoxon és nem tétel

 

4. Matematikai formalizált nyelven megírt ontológiai istenérve. -> Butaság a köbön. Viccnek is rossz.

Elminster Aumar Creative Commons License 2022.12.02 -1 2 5

Nagyon becsípődött neked ez a szerencsétlen Kurt Gödel. (Megszállott monománia rulez!)

Szerencséd, hogy egy büdös szót nem értesz a munkásságából, így szégyentelenül írhatsz akármekkora ostobaságot ebben a témakörben.

Cleaning Cloths Creative Commons License 2022.12.02 -1 0 4

Érintő

Aktuális szám: 4. szám 2017. június 

 

Molnár Zoltán Gábor 

2017. JÚNIUS

Gödel nemteljességi tételei: értelmezések és félreértések

 

Gentzen, szemben a matematikai logikában ma is szokásos móddal, amely sok axiómával és kevés levezetési szabállyal dolgozik, olyan rendszert javasolt, amelyben sok a levezetési szabály, és nincsenek (logikai) axiómák.

....

Hogyan érhető tetten ez a szemlélet Franzénnál? Franzén doktori témavezetője Prawitz volt, és mindenestül magáévá tette azt a személetet, mely képes elrugaszkodni nem csak az ,,igaz” és ,,hamis” használatától, de még a halmazelmélettől is.

Cleaning Cloths Creative Commons License 2022.12.02 -1 1 3

A matematikában sok fura dolog lehetséges a belső szabályai szerint helyesen. Így a 2,4 +2,4 = 4,8  egész számra való kerekítési, megjelenítési és a megfelelő műveleti sorrend szabály "törvénnyel" éppen ilyen. Ebben az esetben 2+2=5 és teljesen logikusan és szabályosan. 

Előzmény: Creativus (1)
Cleaning Cloths Creative Commons License 2022.12.02 -1 0 2

"egy" = "1"

 

"kettő" = "2"

 

Erre gondoltál? 

Előzmény: Creativus (1)
Creativus Creative Commons License 2022.12.02 -1 1 1

"természetes számok elméletét tartalmazó"

 

Én itt látom a dolgok sarokkövét. Minden más csak puszta szócséplés.

Előzmény: Cleaning Cloths (-)
MemetikaTan Creative Commons License 2022.12.02 -2 0 0

Gödel első nemteljességi tétele is pszihovirus-szerűen (vallás/hit, konteó, álhír, fake news, hiedelem, áltudomány,  posztmodern filozófia,  téveszme, pletyka ...)  terjedt csak el, mert az is csak érvelési hiba trükk, átverés, akárcsak más átverések, amelyek még is népszerűek. Lásd kijózanító példának a Barkóbát és kétféle szabályrendszerét. Az alap barkóba axióma és belső szabály-rendszerében csak IGEN és NEM válasz lehet. A kibővített Barkóbában meg IGEN, NEM, IS, NEM JELLEMZŐ és NEM TUDOM. Mindkettő axióma rendszer és belső szabályok összessége. Sőt mindkettő formális axióma rendszer. Tehát egy olyan rendszerben, amiben a szabályok és az axióma rendszerek is csak saját magán múlnak ... az bizony ... körkörös logika. Elvi hiba és elvetendő. Vagy mindkettő barkóba, mindkettő matematika és akkor Gödel első nemteljességi tételére is felvehető egy kibővített axiómarendszer, amiben már működik a játék és teljes. A matematika tehát - ettől - lehet TELJES !!!

 

Gondolkodásjavító vakcina mémkép a témában: 

 

 

 

Előzmény: Cleaning Cloths (-)
Cleaning Cloths Creative Commons License 2022.12.02 0 0 topiknyitó

Kurt Gödel (1906-1978) matematikus, de igazából filozófia könyveket írt négy tétele / érve az ami híresebb. 1. Matematikai teljességi tétele 2 Matematika első nemteljességi tétele 3 Matematikai második nemteljességi tétele 4. Matematikai formalizált nyelven megírt ontológiai istenérve. Minden jele szerint ezek egymást is cáfolják.

 

Gödel első nemteljességi tétele: "Minden ellentmondásmentes, a természetes számok elméletét tartalmazóformális-axiomatikus elméletben megfogalmazható olyan állítás, mely se nem bizonyítható, se nem cáfolható." 

 

Gödel 2. nemteljességi tétel: " ... az egyik ilyen eldönthetetlen és bizonyíthatatlan állítás, pont az hogy a rendszer ellentmondásmentes" ..." Értelmezés szerint - és ez minden bizonnyal egy helyes értelmezés-  már cáfolja is vele a saját korábbi hasonló nevű, csak éppen egyes sorszámú tételét. (Lehet nem is egyet, hanem kettőt is. Tehát a teljességit is.) 

 

 

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!