Keresés

Részletes keresés

mmormota Creative Commons License 2014.06.03 0 0 46

Szerintem a funkcionlitást nem szabadna ennyire háttérbe szorítni a matematika egységességének a kedvéért.

Pont a szigorú definíciók és formális szabályok teszik igazén hasznossá a fogalmakat, ha a probléma nehezen átlátható.

Ha olyan probléma esetén használod a matematikát amit teljesen jól átlátsz, akkor kevésbé precíz definíciók és szabályok esetén is tudod eredményesen használni, mert maga a mögöttes tartalom (ami lehet fizikai vagy bármi más) átlátása segít a brutális hibák elkerülésében.

De ha a probléma új, nehezen átlátható, nincsenek hasonló megoldott mintapéldák, akkor ez nem áll fenn. Ilyenkor aranyat ér, hogy van ami vezessen, ezt és ezt nem tehetem, viszont lehetőség van így és így tovább menni. 

Előzmény: ZorróAszter (44)
Yorg365 Creative Commons License 2014.06.02 0 0 45

Igen, az igaz, hogy előkészítés nélkül a formális definíció légből kapottnak, túl absztraktnak tűnhet.

Előbb célszerű egyszerű példákat nézni egy fogalomra. A 11-es hozzászólásomnak akkor csak nézd az utolsó bekezdését, az abban leírt példát. Arra még nem reagáltál.

Előzmény: ZorróAszter (44)
ZorróAszter Creative Commons License 2014.06.02 0 0 44

Szerintem a funkcionlitást nem szabadna ennyire háttérbe szorítni a matematika egységességének a kedvéért.

 

Így az egyes konkrét összetevők (pl. éppen a skalárok bevezetése) önkényesnek hatnak.

 

Holott annak idején konkrét fizikai problémák megoldására vezették be a vektorok fogalmát, és a skalárok bevezetésének is konkrét megoldandó feladat volt az oka.

 

 

Az ilyen végtelen??? lehetséges számú S:=(U,T,R,M,C) -n alapuló bevezetés azt sugallja, hogy a matematikának semmi köze a valósághoz, és amit például véletlenül tud használni például a fizika, az olyan, mint mikor az ács beverne egy szöget, és hozzá némi keresgélés után véletlenül a porban talál egy eldobott kalapácsot.

 

Mintha a matematika írtózna attól, hogy valaki is valaminek a segédtudományának lássa, és ezzel akar az összes tudomány fölé kerekedni.

Előzmény: Yorg365 (41)
ZorróAszter Creative Commons License 2014.06.02 0 0 43

Már az előbbi kommetednél is csodálkoztam, hogy sehol egy infinitezimális, se egy apoteózis, de még egy soványka paradigmaváltás se.

 

Se egy szál wikipédiából ollózott bölcsesség.

 

De még egy picurka sejttetés se büszkeségre okot adó iskolai végzettségedre.

 

 

De valamit félreérthettél: miattam ne feszélyezd magad.

Előzmény: Szelki Lata (39)
ZorróAszter Creative Commons License 2014.06.02 0 0 42

Sajna nem értem. Sem az eddigiek fényében, sem azt, hogy bármely valós szám miért ne lenne elhelyezhető egy számegyenesen. Így a racionálist se.

Előzmény: NevemTeve (38)
Yorg365 Creative Commons License 2014.06.02 0 0 41

"Szerintem amikor a matematikát egységesítették, halmazelméleti alapokra helyezték, majd a vektorterek elméletét és a vektoralgebrát átalakították úgy, hogy beilleszthető legyen a többi algebrai struktúra közé, közben átláthatatlanná vált a vektorfogalom első bevezetése idején követett logika ebből  feje tetejére állított szempontból."

 

Ez egészen biztosan nincs így. Ha rászánnál egy kis időt, energiát a témára, te is átláthatnád az egész logikáját, és speciális eseteként nézhetnéd a középiskolás vektorfogalmat valami sokkal általánosabbnak.

Előzmény: ZorróAszter (32)
Hírmérnök Creative Commons License 2014.06.02 0 0 40

Köszönöm válaszod (a síkvilági forgatónyomatékról szólót).

Előzmény: mma (10)
Szelki Lata Creative Commons License 2014.06.02 0 0 39

Köszi, hogy nem azt a módszert ajánlod, hogy ész nélkül tűzdeljem tele a mondókámat véletlenszerűen latin szavakkal.

Bár azért ez némi rejtett féltékenységre és irigységre is vall.

 

Igen, féltékeny vagyok rád, és írígy. Személyiséged már nagyon fejlett, legalábbis abból ítélve, ahogy az oktatási rendszert elkerülted.

Előzmény: ZorróAszter (37)
NevemTeve Creative Commons License 2014.06.02 0 0 38

> Igen / nem / kellően laza társalgásban nem ordító hiba / ... / ... vagy mi?

 

A hármas. (Pl. messze nem olyan rossz, mint pl dy/dx-ben d-vel egyszerűsíteni... na jó, ez tréfa volt)

 

> > Érdekesebb kérdés pl. ez: a valós számok R halmaza hány dimenziós vektortér a racionális számok Q halmaza felett?

 

> Félve válaszolom, mert nyilván ha ilyen egyszerűnek látszik a válasz akkor nagy valószínűséggel nem az, hogy egydimenzióst.

 

Ugyebár itt szám-egyesek-ről van szó, mégis legalábbis kétdimenziós kell legyen (igazából végtelen), mivel az 1*r1 + sqrt(2)*r2 = 0 -nak nincs megoldása racionális r1, r2 megoldása.

Előzmény: ZorróAszter (35)
ZorróAszter Creative Commons License 2014.06.02 0 0 37

Köszi, hogy nem azt a módszert ajánlod, hogy ész nélkül tűzdeljem tele a mondókámat véletlenszerűen latin szavakkal.

 

Bár azért ez némi rejtett féltékenységre és irigységre is vall.

Előzmény: Szelki Lata (36)
Szelki Lata Creative Commons License 2014.06.02 0 0 36

"Érdekesebb kérdés pl. ez: a valós számok R halmaza hány dimenziós vektortér a racionális számok Q halmaza felett?"

Félve válaszolom, mert nyilván ha ilyen egyszerűnek látszik a válasz akkor nagy valószínűséggel nem az, hogy egydimenzióst.

"...De más példákat is figyelembe véve én inkább azt gondolom, hogy akkor ezek szerint világszerte az oktatás nem támogatja az egészséges személyiségfejlődést...."

 

Félek, hogy a személyiségfejlődésedet nem fogja előmozdítani sem a válasz, sem az ahhoz vezető út, ezért inkább - nem is tudom, mi lenne a HELYES pszichológia megközelítés- írjál még vagy 200 kommentet, mielőtt elgondolkodsz. Mondjuk egy jó csehszlovák szilvából főzött magyar pálinkát húzzál le a gondolkodás előtt, az nem árthat.

Előzmény: ZorróAszter (35)
ZorróAszter Creative Commons License 2014.06.02 0 0 35

Köszönöm, de még mindig nem értem, hogy a tárgyalt kérdés eldöntésével kapcsolatban ez milyen hatással van?

 

Igen / nem / kellően laza társalgásban nem ordító hiba / ... / ...

vagy mi?

 

Beleértve 

"Természetesen egy akármilyen T számtest önmaga feletti egydimenziós vektortérnek tekinthető, ebben nincs semmi izgalmas."

-t is.

 

 

 


"Érdekesebb kérdés pl. ez: a valós számok R halmaza hány dimenziós vektortér a racionális számok Q halmaza felett?"

Félve válaszolom, mert nyilván ha ilyen egyszerűnek látszik a válasz akkor nagy valószínűséggel nem az, hogy egydimenzióst.

Előzmény: NevemTeve (34)
NevemTeve Creative Commons License 2014.06.02 0 0 34

Ha jól értem, az a kérdésed, hogy egy kellően laza tárgyalásban használhatjuk-e az 'azonos' és az 'izomorf' szavakat szinonimaképp. Persze, miért ne?

 

Cserébe a jó hírért vetnél egy pillantást a (3)-asban írt kérdésre?

Előzmény: ZorróAszter (33)
ZorróAszter Creative Commons License 2014.06.02 0 0 33

Közben rájöttem, hogy az izomorfizmus nem lehet nem kölcsönös, csak mintha az azonosságnál még így is kevesebb lenne.

 

Vagy ebben az esetben nem?

Előzmény: NevemTeve (29)
ZorróAszter Creative Commons License 2014.06.02 0 0 32

Persze a példámon huzakodhatunk: én mondhatom hogy mert Szlovákiában az euro miatt drága a pálinkánakvaló gyümölcs is, te meg mondhatod erre, hogy akkor ott van Románia, stb.

 

De ugye te is tudod, hogy nem ez volt a lényeg.

 

És az sem, hogy a mostani példám nem absztrakt matematikai, mert hogy nem az, annak nincs köze ahhoz, hogy a vektorok és skalárok kérdésében nem a fizikaiakról kezdtünk beszélni.

 

 

 

 

Szerintem amikor a matematikát egységesítették, halmazelméleti alapokra helyezték, majd a vektorterek elméletét és a vektoralgebrát átalakították úgy, hogy beilleszthető legyen a többi algebrai struktúra közé, közben átláthatatlanná vált a vektorfogalom első bevezetése idején követett logika ebből  feje tetejére állított szempontból.

 

Holott az algebrai struktúrák közé illesztéshez felhasznált átalakítások nem tették hamissá az eredeti gondolatmenetet sem. Annak ekvivalens átalakításának kell lennie.

Előzmény: Yorg365 (28)
ZorróAszter Creative Commons License 2014.06.02 0 0 31

Sajna azt nem értem, hogy az izomorfizmus még semmiképpen nem azonosság. Vagy a kölcsönös izomorfizmus az? Mintha még az se lenne feltétlenül.

Előzmény: NevemTeve (29)
NevemTeve Creative Commons License 2014.06.02 0 0 30

(Úgy látom, az index megette a 'részhalmaz' jelet. Köszi!)

NevemTeve Creative Commons License 2014.06.02 0 0 29

> Akkor először nézzük a triviális kérdést.

> Van egy halmaz, a szám n-esek halmaza.

> Ennek részhalmaza a szám egyesek, az egydimenziós vektorok halmaza.

 

Ezt úgy tudnám interpretálni, hogy

1. A1 A-- ez igaz.

2. A1 egydimenziós vektortér A felett (a szokásos műveletekkel, ha A számtest -- ez is igaz.

(mindkettő igaz, a kettő között nincs összefüggés)

 

> A skalárok halmaza szintén szám egyesek halmaza.

 

Ezt már egy kicsit nehezebben hiszem el... Inkább azt mondanám, hogy a számegyesek halmaza (vagyis az A1) izomorf az A-val. (Lásd a következő pontot.)

 

> Minden skalárnak megfeleltethető egy egydimenziós vektorok halmazából vett elem és fordítva. Ugyanaz az R-beli elem.

 

Ez igaz.

 

> Akkor miért nem egyenlő a két halmaz?

 

Ha két halmaz izomorf, akkor bizonyos értelemben egyenlőnek tekinthetők. Ha akarjuk. Például a valós számok halmaza tartalmaz egy részt, ami izomorf (ezért azonosítható) a racionális számok halmazával.

Előzmény: ZorróAszter (27)
Yorg365 Creative Commons License 2014.06.02 0 0 28

Azt írtad az előbb, hogy matematikai skalárokról és vektorokról beszélsz, most ez a halmazokra nem vonatkozik?

 

Azt se látom, hogy a két halmaz miért lenne egyenlő. Ha mondjuk nyíregyházi gyümölcsből  lehet gazdaságosan pálinkát főzni Budapesten, akkor miért ne lehetne szlovákiaiból is?

 

Én úgy látom, az az alapvető tévedésed, hogy azt képzeled, hogy az összes egydimenziós valós vektortér esetén a vektorok halmaza azonos a valós számok halmazával. De ez nem igaz, a 11-ben példát is mutattam erre.

Előzmény: ZorróAszter (26)
ZorróAszter Creative Commons License 2014.06.02 0 0 27

De itt nem sorozatokról van szó, hanem két halmazról, amelyik szám egyeseket tartalmaz.

Előzmény: NevemTeve (25)
ZorróAszter Creative Commons License 2014.06.02 0 0 26

Például van a gyümölcsök halmaz, annak része a Nemdéligyümülcsök halmaza, annak része a MagyarországonTermettÉtkezésreNemeladhatóMinőségű gyümölcsök halmaza.

 

Aztán van egy másik halmaz, a PálinkaFőzésreAlkalmas gyümölcsök halmaza, és annak része a BudapestenGazdaságosanPálinkafőzésreAlkalmas gyümölcsök halmaza.

 

Namost akkor a két halmaz, a MagyarországonTermettÉtkezésreNemeladhatóMinőségű és a BudapestenGazdaságosanPálinkafőzésreAlkalmas gyümölcsök halmaza azonos akkor is, ha eredetileg más szempontok szerint cimkéztük őket.

 

Például az elsőt minőség szerint pontoztuk 0,0-től 5,0-ig, és az 2,25 alattiak kerültek a halmazba, másikba meg úgy, hogy alkalmas/nem alkalmas. 

Előzmény: Yorg365 (24)
NevemTeve Creative Commons License 2014.06.02 0 0 25

Ez azért egy kicsit más, mint a vektortér... ha mondjuk adott egy A alaphalmaz, akkor beszélhetünk az A fölötti véges, végtelen, vagy bármilyen sorozatok halmazáról (jelük lehet pl. A*, A, A**), ezeken is értelmezhetünk műveleteket (pl az összekapcsolást), de egyik sem vektortér.

Előzmény: ZorróAszter (5)
Yorg365 Creative Commons License 2014.06.02 0 0 24

"Hanem olyanokról, amelyeknek az elemei azonosak. Függetlenül attól, hogy a képzésüknek az útja mi volt."

 

Itt nem értem, mire gondolsz. Mondanál példát szerinted azonos halmazokra, amik képzésének útja más?

Előzmény: ZorróAszter (22)
ZorróAszter Creative Commons License 2014.06.02 0 0 23

Mi itt matematikai vektorokról és skalárokról beszélünk.

 

A matematikai és a fizikában használt kiterjesztéseik közötti különbségeket Mma olvtárs is vitatja.

 

Kb. itt ragadtunk le a Létezik-e az Idő? topicban 1036-nál:

 

http://forum.index.hu/Article/showArticle?t=9212873

 

 

 

Előzmény: Yorg365 (21)
ZorróAszter Creative Commons License 2014.06.02 0 0 22

Én nem olyan halmazoknak az azonosságáról beszéltem, amelyeknek az elemei nem azonosak.

 

Hanem olyanokról, amelyeknek az elemei azonosak. Függetlenül attól, hogy a képzésüknek az útja mi volt.

 

 

Előzmény: Yorg365 (20)
Yorg365 Creative Commons License 2014.06.02 0 0 21

A skalárszorzat, vagy belső szorzat egy további struktúrát jelent a vektortéren felül. Nem minden vektortérben van belső szorzat. Pl. ha az időt (vagy pontosabban az időbeli eltolásokat) tekintjük, mint vektorteret, ott nincs egy természetes belső szorzat. Persze definiálni lehet, de nincs fizikai tartalma.

Mi az, hogy 2 s szorozva 5 s-mal? 10 s^2-en? És az mi?

Előzmény: ZorróAszter (18)
Yorg365 Creative Commons License 2014.06.02 0 0 20

"Azoknak az azonossága meg nem függ attól, hogy milyen kontextusban jelennek meg, például hogy milyen más, akár különböző halmazoknak a részhalmazai egyébként."

 

Már hogyne függne! Halmazok azonossága csupán annyit jelent, hogy az elemeik azonosak. A valós számok halmaza, és pl. az (x,y) ; y=2x feltételt kielégítő számpárokból álló halmaz nem azonos, hisz az elemeik se azonosak.

Előzmény: ZorróAszter (19)
ZorróAszter Creative Commons License 2014.06.02 0 0 19

Igen, de én itt nem a struktúrák vagy a kategóriák azonosságának a kérdésére kérdeztem rá, hanem csak a halmazokéra.

 

Azoknak az azonossága meg nem függ attól, hogy milyen kontextusban jelennek meg, például hogy milyen más, akár különböző halmazoknak a részhalmazai egyébként.

Előzmény: Yorg365 (16)
ZorróAszter Creative Commons License 2014.06.02 0 0 18

Bocs. Lefelejtettm a minuszt. Helyesen (vagy helytelenül):

 

Egydimenziós esetben a skalárszorzat miért nem veszi fel a valós szorzás tulajdonságait?

Pl. v1={-3,15} és v2={-2,1} esetén {6,615}

v1={3,15} és v2={-2,1} esetén {-6,615}

Előzmény: ZorróAszter (17)
ZorróAszter Creative Commons License 2014.06.02 0 0 17

Egydimenziós esetben a skalárszorzat miért nem veszi fel a valós szorzás tulajdonságait?

 

Pl. v1={-3,15} és v2={-2,1} esetén {6,615}

 

v1={3,15} és v2={-2,1} esetén {6,615}

Előzmény: mma (9)

Ha kedveled azért, ha nem azért nyomj egy lájkot a Fórumért!