HK kísérlete nem ezt mutatta. Mindegy, hogy a mágnes forog vagy nem forog. Einstein pedig az indoklásban összemosta a mozgási indukciót a fluxusváltozással.
Valahogy ezt elemi lépésenként le kellene vezetned. Szerintem szuperpozíciót kell alkalmazni. Töltött gömb + semleges köráramok. A nem forgó töltött gömb belsejében az elektromos térerősség nulla. A semleges köráramoknak pedig az egymenetes tekercs belsejében van mágneses terük. Most jön a rotáció rotációja. Mennyire vagy jó vektoralgebrából? Ha az elektromos mező rotációja tengely irányú, milyen irányú a rotáció rotációja?
Azért, mert egyértelműen badarság. Nem fogok minden hibás kijelentésre részletes hibaleírásokat adni, mert nincs rá időm.
Te mondd meg azt, hogy szerinted miért nem számít a mágnesrészek sebessége? Ugyan miből gondolod, hogy azzal nem is kell foglalkozni, csak a vezeték sebességével? Nem gondolod, hogy itt valami nagy hiba van akkor?
Képzeledben felszeleteled a korongot. Csakhogy az erővonalak nincsenek dedikáltan hozzárendelve a korong darabkáihoz. Kicsit más lenne a helyzet, ha a darabkák között nem mágneses anyag töltené ki a hézagot. De még az sem jelentené azt, hogy az egyik darabka cipeli a saját erővonalát. Az erővonalak a nyugvó megfigyelő vonatkoztatási rendszerében vannak, az erússégük változik, de nem mászkálnak. A mozgó megfigyelő vonatkoztatási rendszerében is vannak erővonalak. Ez két külön dolog.
Már többször elmondtam, de olyan, mintha nem olvastad volna. A mágnesrészek mozgása alapján lesz E. Ennyi. Tekintheted hozzá az EM tér Lorentz-transzformációját.
Vagy honnan veszed mondjuk, hogy az egyáltalán nem számít?
Felszeletelhetnénk a gömböt vékony gyűrűkké? Egymenetes tekercsek a szélességi körök mentén. Innentől kezdve a problémát felbonthatjuk töltések és áramok szuperpozíciójára.
Ez a d/dt(területxmerőleges_fluxus) dolog egy egyszerűsítés, sokszor működik is, de nem mindig.
Pl. csináltak olyan - eléggé vicces - kísérletet, hogy fix fluxusú területre beraktak egy nagyobb meg egy kisebb vezetékhurkot. Meg egy kétállású kapcsolót, amivel katt, átváltottak a kicsi hurokról a nagyra. Ott van a jó nagy terület x fluxus változás, de valahogy mégse akar feszültség keletkezni. :-)
Nem fogalmazod meg pontosan, de mintha az alábbi faramuci gondolatmenetet követnéd:
Ok, beletörődöm, hogy Maxwellnél nincsenek mozgó erővonalak, ha ennyire ragaszkodtok hozzá. De mivel azok mégiscsak vannak, valahogy Maxwellnél is meg kell jelenni a hatásuknak, ha máshogy nem, az általuk létrehozott E mező képében... :-)
Ha áram folyik, valahol záródnia kell az áramkörnek. Ebből következően ez nem csak egy darab drót. Azt pedig minden tankönyv megmutatja, hogy a mozgó vezetékben keletkező feszültség ugyanannyi, mint amit a változó területű görbe által határolt fluxusváltozás ad.
Nehezen tudok Szabikuval vitatkozni, mert - legalábbis az én ízlésem szerint - nem precíz, csapong. Úgy ír, mintha létezne telepátia, vagy fél szavakból is értenénk egymást. De ha egyszer épp az a gond, hogy valamiben nem értünk egyet, akkor ez a telepátiás dolog nem működhet.
Nincs olyan elgondolásom. Csupán annyi köze van, hogy mindkettőnél a Lorentz-transzformációt is tekinthetjük.
>Azt tudjuk, hogy a divEarányos kell legyen a töltéssűrűséggel, ami ugye bent nulla. Ezért az E-nek nem lehet sugárirányú összetevője. [....] Legfeljebb forgástengellyel párhuzamos komponensei lehetnének....
#Az aláhúzott következtetésed elkapkodott. De a legvégső is:
>Egyébként már magából a rotE=0 -ból lehet látni, hogy az E-nek egy skalárpotenciállal leírhatónak kell lennie, vagyis E=-grad(fi), azaz a forgó töltésgömbhéj mezeje semmiben sem különbözik a statikus gömbhéj mezejétől, azaz belül E=0.
#Ez sem jó.
Annyi van, hogy relativisztikusnak mondható v esetén van jelentős eltérés.
A mai szemlélet szerint egységes EM mező van a téridő pontjaira értelmezve, és ha választasz egy bázist (kiválasztasz egy inerciarendszert) akkor abban az egységes EM mezőnek látod az E és B vetületét.
Ugyanaz a figura, ahogy az egységes téridő térre és időre bomlik egy adott bázisban.
For if the magnet is in motion and the conductor at rest, there arises in the neighbour- hood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated.
Azaz, ha a mágnes mozog és a vezeték nyugalomban van, a mágnes környezetében megjelenik egy elektromos mező. Nem tudom, hogy az energiáját miből veszi. Azzal egyetértek, hogy megjelenik az elektromos mező. De nem azért, mert a mágneses erővonalak vándorolnak a pusztákon át. Hanem mert ∂B/∂t fellép a mozgás során. Átadom a szót a kapitánynak, hogy ő mondja ki. Valaki itt nagy tévedésben van, sok apró dolgot illetően. ;)